No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Polymerized organic thin films were synthesized on a variety of substrates by Plasma Enhanced Chemical Vapor Deposition (PECVD) technique using isopropanol as precursor. Hydrogen peroxide, ammonium hydroxide, and iodine dissolved in isopropanol were used as dopants and chlorobenzene as copolymerization precursor. The structural, optical and electrical properties of the films were studied as functions of the dopant type and concentration.
The polymeric films were characterized by variable angle ellipsometry (VAE), atomic force microscopy (AFM), Fourier Transform Infrared spectroscopy (FTIR), ultraviolet-visible transmission spectroscopy and photoluminescence. The electrical film behavior was explored by the four points probe method.
The growth rate, refractive index, optical bandgap, chemical structure and resistivity of the films strongly depend on the concentration and type of dopant added. The AFM microphotographs showed smooth surfaces with RMS roughness less than 10 nm. The optical bandgap values of the films were in the range of 2.6 to 3.26 eV, the resistivity was in the order of 103 – 104 ohm-cm. The photoluminescence response of the polymerized films was obtained in the visible region, by exciting with a UV laser.