Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:39:16.388Z Has data issue: false hasContentIssue false

Growth and Characterization of InGaN/GaN Heterostructures Using Plasma-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

K. H. Shim
Affiliation:
Wide Band Gap Semiconductor Team, Microelectronics Technology Research Laboratory, Electronics and Telecommunications Research Institute161 Kajung-Dong, Yusong-Gu, Taejon, Korea 305–350
S. E. Hong
Affiliation:
Wide Band Gap Semiconductor Team, Microelectronics Technology Research Laboratory, Electronics and Telecommunications Research Institute161 Kajung-Dong, Yusong-Gu, Taejon, Korea 305–350
K. H. Kim
Affiliation:
Wide Band Gap Semiconductor Team, Microelectronics Technology Research Laboratory, Electronics and Telecommunications Research Institute161 Kajung-Dong, Yusong-Gu, Taejon, Korea 305–350
M. C. Paek
Affiliation:
Wide Band Gap Semiconductor Team, Microelectronics Technology Research Laboratory, Electronics and Telecommunications Research Institute161 Kajung-Dong, Yusong-Gu, Taejon, Korea 305–350
K. I Cho
Affiliation:
Wide Band Gap Semiconductor Team, Microelectronics Technology Research Laboratory, Electronics and Telecommunications Research Institute161 Kajung-Dong, Yusong-Gu, Taejon, Korea 305–350
Get access

Abstract

Structural and optical properties of In0.2Ga0.8N/GaN heterostructures grown by plasma-assisted molecular beam epitaxy have been investigated as a function of rf plasma power. Indium incorporation resulted in the higher rf power level suppressing 3D island growth with reduced introduction of defects in In0.2Ga0 8N in comparison with GaN. Sharp morphology at interfaces and strong transitions in photoluminescence reveal the optimum rf power around 400 W in our experimental set up for the growth of In0.2Ga0.8N/GaN heterostructures. Our experimental observations suggest that the presence of indium on surface modulates the rate of plasma stimulated desorption and diffusion, and reduces the formation of damaged subsurface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett. 72, 211(1998).10.1063/1.120688Google Scholar
2. Tsai, C.J., Atwater, H.A., and Vreeland, T., Appl. Phys. Lett. 57, 2305(1990).10.1063/1.103877Google Scholar
3. Barnett, S.A., Choi, C.H., and Kaspi, R., Mat. Res. Soc. Symp. Proc. 201 (1991).Google Scholar
4. Leung, M.S.H., Klockenbrink, R., Kisielowski, C., Fujii, H., Kruger, J., Sudkier, G.S., Anders, A., Liliental-Weber, Z., Rudin, M., and Weber, E.R., Mater. Res. Soc. Symp. Proc. 449, 221(1997).10.1557/PROC-449-221Google Scholar
5. Fujii, H., Kisielowski, C., Krueger, J., Leung, M.S., Klockenbrink, R., Rubin, M., and Weber, E.R., Mat. Res.Soc. Symp. Proc. 449, 227(1997).10.1557/PROC-449-227Google Scholar
6. Shim, K.H., PhD thesis, University of Illinois at Urbana-Champaign, 1997.Google Scholar
7. Murty, M.V.R., Atwater, H.A., Kellock, A.J., and Baglin, J.E.E., Appl. Phys. Lett. 62, 2566(1993).10.1063/1.109298Google Scholar
8. Harper, J.M.E., Cuomo, J.J., and Hentzell, H.T.G., Appl. Phys. Lett. 43, 547(1983).10.1063/1.94414Google Scholar