Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:36:07.192Z Has data issue: false hasContentIssue false

Growth and Characterization of Bulk GaN Crystals at High Pressure and High Temperature

Published online by Cambridge University Press:  01 February 2011

M. P. D'Evelyn
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
K. J. Narang
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
D.-S. Park
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
H. C. Hong
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
M. Barber
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
S. A. Tysoe
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
J. Leman
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
J. Balch
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
V. L. Lou
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
S. F. LeBoeuf
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
Y. Gao
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
J. A. Teetsov
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
P. J. Codella
Affiliation:
GE Global Research Center, Niskayuna, NY 12309, USA
P. R. Tavernier
Affiliation:
Materials Department, College of Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106–5050, USA
D. R. Clarke
Affiliation:
Materials Department, College of Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106–5050, USA
R. J. Molnar
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA 02173–9108, USA
Get access

Abstract

We report the growth and characterization of bulk GaN single crystals by temperature-gradient recrystallization at high pressure and high temperature (HPHT), using apparatus adapted from that used to synthesize gem-grade diamond crystals. The bulk crystals are grown on seeds that were synthesized by hydride vapor phase epitaxy (HVPE) and subsequently removed from their sapphire substrate. Our largest crystals to date are 15×18 mm in diameter; however, the process is scalable to 50 mm and above. The crystals are transparent and well faceted, and dislocation densities below 100 cm−2 have been achieved. Additional characterization of the GaN crystals is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mukai, T. and Nakamura, S., Jpn. J. Appl. Phys. 38, 5735 (1999);Google Scholar
Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 79, 711 (2001);Google Scholar
Yasan, A., McClintock, R., Mayes, K., Darvish, S. R., Zhang, H., Kung, P., Razeghi, M., Lee, S. K., and Han, J. Y., Appl. Phys. Lett. 81, 2151 (2002);Google Scholar
Yu Karpov, S. and Makarov, Y. N., Appl. Phys. Lett. 81, 4721 (2002).Google Scholar
2. Nakamura, S., Bulletin, MRS, May 1998, 37;Google Scholar
Nagahama, S., Iwasa, N., Senoh, M., Matsushita, T., Sugimoto, Y., Kiyoku, H., Kozaki, T., Sano, M., Matsumura, H., Umemoto, H., Chocho, K., and Mukai, T., Jpn. J. Appl. Phys. 39, L647 (2000).Google Scholar
3. Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969);Google Scholar
Molnar, R. J., in Gallium Nitride II, ed. Pankove, J. I. and Moustakas, T. D., Semiconductors and Semimetals, Vol. 57 (Academic Press, San Diego, 1999).Google Scholar
4. Lee, K. Y. and Auh, K. H., Jpn. J. Appl. Phys. 40, L13 (2001);Google Scholar
Motoki, K., Okahisa, T., Matsumoto, N., Matsushima, M., Kimura, H., Kasai, H., Takemoto, K., Uematsu, K., Hirano, T., Nakayama, M., Nakahata, S., Ueno, M., Hara, D., Kumagai, Y., Koukitu, A., and Seki, H., Jpn. J. Appl. Phys. 40, L140 (2001);Google Scholar
Vaudo, R. P., Xu, X., Loria, C., Salant, A. D., Flynn, J. S., and Brandes, G. R., Phys. Stat. Sol. (a) 194, 494 (2002).Google Scholar
5. Porowski, S., Internet, MRS J. Nitride Semicond. Res. 4S1, G1.3 (1999).Google Scholar
6. Inoue, T., Seki, Y., Oda, O., Kurai, S., Yamada, Y., and Taguchi, T., Phys. Stat. Sol. (b) 223, 15 (2001);Google Scholar
Gilbert, D. R., Novikov, A., Patrin, N., Budai, J. S., Kelly, F., Chodelka, R., Abbaschian, R., Pearton, S. J., and Singh, R., Appl. Phys. Lett. 77, 4172 (2000).Google Scholar
7. Aoki, M., Yamane, H., Shimada, M., Sarayama, S., and DiSalvo, F. J., Cryst. Growth Design 1, 119 (2001);Google Scholar
Soukhoveev, V., Ivantsov, V., Melnik, Yu., Davydov, A., Tsvetkov, D., Tsvetkova, K., Nikitina, I., Zubrilov, A., Lavrentiev, A., and Dmitriev, V., Phys. Stat. Sol. (a) 188, 411 (2001);Google Scholar
Kawamura, F., Iwahashi, T., Omae, K., Morishita, M., Yoshimura, M., Mori, Y., and Sasaki, T., Jpn. J. Appl. Phys. 42, L4 (2003).Google Scholar
8. Dwiliński, R., Doradziński, R., Garczyński, J., Sierzputowski, L., Baranowski, J. M., and Kamińska, M., Diamond Relat. Mater. 7, 1348 (1998);Google Scholar
Ketchum, D. R. and Kolis, J. W., J. Cryst. Growth 222, 431 (2001);Google Scholar
Purdy, A. P., Chem. Mater. 11, 1648 (1999);Google Scholar
Collado, C., Demazeau, G., Berdeu, B., Largeteau, A., Garcia, J.-C., Guyaux, J.-L., and Massies, J., C. R. Acad. Sci. Paris, 2, Série II c, 483 (1999).Google Scholar
9. Tavernier, P. R. and Clarke, D. R., J. Am. Ceram. Soc. 85, 49 (2002).Google Scholar
10. Vagarali, S., Lee, M., and DeVries, R. C., J. Hard Mater. 1, 233 (1990).Google Scholar
11. Haar, L. and Gallagher, J. S., J. Phys. Chem. Ref. Data 7, 635 (1978).Google Scholar
12. Aoki, M., Yamane, H., Shimada, M., Kajiwara, T., Sarayama, S., and DiSalvo, F. J., Cryst. Growth Design 2, 55 (2002).Google Scholar
13. Weyher, J. L., Müller, S., Grzegory, I., and Porowski, S., J. Cryst. Growth 182, 17 (1997);Google Scholar
Karouta, F., Weyher, J. L., Jacobs, B., Nowak, G., Presz, A., Grzegory, I., and Kaufmann, L. M. F., J. Electronic Mater. 28, 1448 (1999).Google Scholar
14. Perlin, P., Jauberthie-Carillon, C., Itie, J. P., San Miguel, A., Grzegory, I., and Polian, A., Phys. Rev. B 45, 83 (1992);Google Scholar
Siegle, H., Eckey, L., Hoffmann, A., Thomsen, C., Meyer, B. K., Schikora, D., Hankeln, M., and Lischka, K., Solid State Commun 96, 943 (1995);Google Scholar
Freitas, J. A. Jr, Braga, G. C. B., Moore, W. J., Tischler, J. G., Culbertson, J. C., Fatemi, M, Park, S. S., Lee, S. K., and Park, Y., J. Cryst. Growth 231, 322 (2001);Google Scholar
Oh, E., Lee, S. K., Park, S. S., Lee, K. Y., Song, I. J., and Han, J. Y., Appl. Phys. Lett. 78, 273 (2001).Google Scholar
15. Irmer, G., Toporov, V. V., Bairamov, H. H., and Monecke, J., Phys. Stat. Solidi (b) 119, 595 (1983);Google Scholar
Kozawa, T., Kachi, T., Kano, H., Taga, Y., Hashimoto, M., Koide, N., and Manabe, K., J. Appl. Phys. 75, 1098 (1994);Google Scholar
Klose, M., Dassow, R., Gross, M., and Schroder, H., J. Cryst. Growth 189/190, 666 (1998).Google Scholar
16. Rosner, S. J., Carr, E. C., Ludowise, M. J., Girolami, G., and Erikson, H. I.; Appl. Phys. Lett. 70, 420 (1997);Google Scholar
Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Ramano, L. T., and Sakai, S., Jpn. J. Appl. Phys. 37, L398 (1998).Google Scholar
17. Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S., and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000).Google Scholar