No CrossRef data available.
Published online by Cambridge University Press: 19 December 2014
Non-polar a-plane InGaN films were grown on a r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The growth temperature and Indium flux were varied to optimize the desired composition of In0.23Ga0.77N on the (11-20) a-plane GaN epilayer grown on a (1-102) r-plane sapphire substrate. The structural, morphological and optical properties of the optimized composition have been studied. It was found that highly a-axis oriented InGaN epilayers with no phase separation can be grown at 540 °C with In/Ga flux ratio of 0.72. The composition of indium incorporation in single phase InGaN films was found to be 23% as estimated by high resolution X-ray diffraction. The room temperature band gap energy of single phase InGaN layers was determined by photoluminescence measurement and found to be around 2.56 eV.