Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:48:53.617Z Has data issue: false hasContentIssue false

Grown-in and Radiation-induced Defects in 4H-SiC

Published online by Cambridge University Press:  01 February 2011

T. A. G. Eberlein
Affiliation:
School of Physics, University of Exeter, Exeter, EX4 4QL, United Kingdom
R. Jones
Affiliation:
School of Physics, University of Exeter, Exeter, EX4 4QL, United Kingdom
P. R. Briddon
Affiliation:
Department of Physics, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom
S. Öberg
Affiliation:
Department of Mathematics, University of Luleå, Luleå, S95 187, Sweden
Get access

Abstract

SiC is a material that seems ideal for high-power, high frequency and high temperature electronic devices. It does not suffer from large reverse recovery inefficiencies typical for silicon when switching. In contrast to silicon, SiC is however difficult to dope by diffusion, and instead ion-implantation is used to achieve selective area doping. The drawback of this technique is that irradiating the crystal with dopant atoms creates a great deal of lattice damage including vacancies, interstitials, antisites and impurity-radiation defect complexes. Although many of the point defects can be eliminated through thermal annealing, some however, e.g. the photoluminescence (PL) DI and DLTS Z1/Z2 centers in ·4H-SiC, are stable to high temperatures. In this polytype, DI and the related alphabet lines are the most prominent PL signals. The latter can be seen directly after low energy irradiation while DI usually dominates the PL spectrum of implanted and irradiated SiC after annealing. Not only implantation but also rapid growth of SiC by CVD methods leads to a deterioration in quality with an increase in electrically active grown in defects. Among these, the Z1/Z2 defects are dominant in n-type 4H-SiC, as well as material that has been exposed to radiation. We use first principles density functional calculations to investigate defect models for the above mentioned defects in 4H-SiC and relate their electrical and optical activity to experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Steeds, J., Carosella, F., Evans, G., Ismail, M., Danks, L., and Voegeli, W., Mater. Sci. Forum. 353-3, 381 (2000).Google Scholar
[2] Evans, G., Steeds, J., Ley, L., Hundhausen, M., Schulze, N., and Pensl, G., Phys. Rev. B 66, art. no. (2002).Google Scholar
[3] Storasta, L., Bergman, J., Janzen, E., Henry, A., and Lu, J., J. Appl. Phys. 96, 4909 (2004).Google Scholar
[4] Egilsson, T., Henry, A., Ivanov, I., Lindstrom, J., and Janzen, E., Phys. Rev. B 59, 8008 (1999).Google Scholar
[5] Steeds, J., Evans, G., Danks, L., Furkert, S., Voegeli, W., Ismail, M., and Carosella, F., Diam. Relat. Mat. 11, 1923 (2002).Google Scholar
[6] Storasta, L., Carlsson, F., Sridhara, S., Bergman, J., Henry, A., Egilsson, T., Hallen, A., and Janzen, E., Appl. Phys. Lett. 78, 46 (2001).Google Scholar
[7] Storasta, L., F. H. C. Carlsson, Bergman, J. P., and Janzen, E., Mater. Sci. Forum 483, 369 (2005).Google Scholar
[8] Choyke, W. J. and Patrick, L., Phys. Rev. B 9, 3214 (1974).Google Scholar
[9] Patrick, L. and Choyke, W. J., Phys. Rev. B 8, 1660 (1973).Google Scholar
[10] Egilsson, T., Henry, A., Ivanov, I. G., Ellison, A., and Janzén, E., Phys. Rev. B 62, 7162 (2000).Google Scholar
[11] Choyke, W. J. and Patrick, L., Phys. Rev. B 29, 355 (1972).Google Scholar
[12] Dean, P. J. and Choyke, W. J., Adv. Phys. 26, 1 (1977).Google Scholar
[13] Choyke, W. J., Patrick, L., and Dean, P. J., Phys. Rev. B 10, 2554 (1974).Google Scholar
[14] Dalibor, T., Peppermuller, C., Pensl, G., Sridhara, S., Devaty, R., Choyke, W., Itoh, A., Kimoto, T., and Matsunami, H., Instit. Phys. Confer. Ser. 142, 517 (1996).Google Scholar
[15] Dalibor, T., Pensl, G., Kimoto, T., Matsunami, H., Sridhara, S., Devaty, R., and Choyke, W., Diam. Relat. Mat. 6, 1333 (1997).Google Scholar
[16] Hemmingsson, C., Son, N., Kordina, O., Bergman, J., Janzen, E., Lindstrom, J., Savage, S., and Nordell, N., J. Appl. Phys. 81, 6155 (1997).Google Scholar
[17] Hemmingsson, C., Son, N., Ellison, A., Zhang, J., and Janzen, E., Phys. Rev. B 58, 10119 (1998).Google Scholar
[18] Aboelfotoh, M. and Doyle, J., Phys. Rev. B 59, 10823 (1999).Google Scholar
[19] Hemmingsson, C., Son, N., and Janzen, E., Appl. Phys. Lett. 74, 839 (1999).Google Scholar
[20] Gong, M., Fung, S., Beling, C., and You, Z., J. Appl. Phys. 85, 7604 (1999).Google Scholar
[21] Anderson, P. W., Phys. Rev. Lett. 35, 953 (1975).Google Scholar
[22] Weidner, M., Frank, T., Pensl, G., Kawasuso, A., Itoh, H., and Krause-Rehberg, R., Physica B 308, 633 (2001).Google Scholar
[23] Pintilie, I., Pintilie, L., Irmscher, K., and Thomas, B., Appl. Phys. Lett. 81, 4841 (2002).Google Scholar
[24] Fujihira, K., Kimoto, T., and Matsunami, H., Appl. Phys. Lett. 80, 1586 (2002).Google Scholar
[25] Zhang, J., Storasta, L., Bergman, J., Son, N., and Janzen, E., J. Appl. Phys. 93, 4708 (2003).Google Scholar
[26] Kimoto, T., Nakazawa, S., Hashimoto, K., and Matsunami, H., Appl. Phys. Lett. 79, 2761 (2001).Google Scholar
[27] Eberlein, T. A. G., Jones, R., and Briddon, P. R., Phys. Rev. Lett. 90, 225502 (2003).Google Scholar
[28] Bockstedte, M., Mattausch, A., and Pankratov, O., Phys. Rev. B 68, art. no. (2003).Google Scholar
[29] Gali, A., Deak, P., Rauls, E., Son, N., Ivanov, I., Carlsson, F., Janzen, E., and Choyke, W., Phys. Rev. B 67, art. no. 155203 (2003).Google Scholar
[30] Rauls, E., Gerstmann, U., Pinheiro, M. V. B., Greulich-Weber, S., and Spaeth, J. M., Mater. Sci. Forum 483, 465 (2005).Google Scholar
[31] Sadowski, H., Schulze, N., Frank, T., Laube, M., Pensl, G., and Helbig, R., Mater. Sci. Forum. 353-3, 401 (2000).Google Scholar
[32] Eberlein, T. A. G., Fall, C. J., Jones, R., Briddon, P. R., and Öberg, S., Phys. Rev. B 65, 184108 (2002).Google Scholar
[33] Gali, A., Aradi, B., Heringer, D., Choyke, W. J., Devaty, R. P., and Bai, S., Appl. Phys. Lett. 80, 237 (2002).Google Scholar
[34] Aradi, B., Gali, A., Deák, P., Lowther, J. E., Son, N. T., Janzén, E., and Choyke, W. J., Phys. Rev. B 63, 245202 (2001).Google Scholar
[35] Gali, A., Deak, P., Son, N., and Janzen, E., Appl. Phys. Lett. 83, 1385 (2003).Google Scholar
[36] Eberlein, T., Huggett, L., Jones, R., and Briddon, P., J. Phys.-Condes. Matter 15, S2897 (2003).Google Scholar
[37] Yan, F., Devaty, R. P., Choyke, W. J., Gali, A., Schmid, F., Pensl, G., and Wagner, G., Mater. Sci. Forum 483, 493 (2005).Google Scholar
[38] Street, R. A. and Mott, N. F., Phys. Rev. Lett. 35, 1293 (1975).Google Scholar
[39] Zywietz, A., Furthmuller, J., and Bechstedt, F., Phys. Rev. B 59, 15166 (1999).Google Scholar
[40] Torpo, L., Marlo, M., Staab, T. E. M., and Nieminen, R. M., J. Phys. Cond. Matter 13, 6203 (2001).Google Scholar
[41] Son, N., Magnusson, B., and Janzen, E., Appl. Phys. Lett. 81, 3945 (2002).Google Scholar