Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:40:58.406Z Has data issue: false hasContentIssue false

Green OLED's: Electroluminescence and the electrical carrier transport

Published online by Cambridge University Press:  15 February 2011

L. Pereira
Affiliation:
Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal
R. Pontes
Affiliation:
Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal
P. Lopes
Affiliation:
Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal
Get access

Abstract

Organic Light Emitting Diodes (OLED) based on metal chelate complexes (Alq3) as the emmiting layer has been prepareded and studied in order to characterise their optical and electrical properties. Electrical measurements have been performed in order to establish the nature of carrier transport. The results point to a trap charge-limited conduction (TCL) with characteristic trap energy near 0.13 eV. In electroluminescence a large green band with a maximum at 2.4 eV was found as a result of three overlapping bands that are correlated with the organic layers. The origin of this luminescence spectrum was analysed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987)Google Scholar
2. Jordan, R. H., Dodabalapur, A., Strukelj, M. and Miller, T. M., Appl. Phys. Lett. 68, 1192 (1996)Google Scholar
3. Kalinowski, J., DiMarco, P., Cocchi, M., Fattori, V., Camaioni, N. and Duff, J., Appl. Phys. Lett. 68, 2317 (1996)Google Scholar
4. Zugang, Liu and Nazaré, Helena, Synthetic Metals 111–112, 47 (2000)Google Scholar
5. Chem, C. H., Shi, J. and Tang, C.W., Macromol. Symp. 25, 1 (1997)Google Scholar
6. Liu, Zugang, Pinto, Joñao, Soares, Jorge and Pereira, Estela, Synthetic Metals, 122, 177 (2001)Google Scholar
7. Shen, Z., Burrows, P. E., Bulovic, V., Garbuzov, D. Z., McCarty, D.M., Thompson, M. E. and Forrest, S. R., Jpn. J. Appl. Phys., 35, L401 (1996)Google Scholar
8. Burrows, P. E., Shen, Z., Bulovic, V., McCarty, D. M. and Forrest, S. R., J. Appl. Phys., 79, 7991 (1996)Google Scholar
9. Zugang, Liu, Weiming, Zhao, Rongbin, Ji, Zhilin, Zhang, Xueyin, Jiang, Minzhao, Xue and Bin, Fang, J. Phys. Condens. Matter, 8, 3221 (1996)Google Scholar
10. Mori, Tatsuo, Miyachi, Kiyokazu and Mizutani, Teruyoshi, J. Phys. D: Appl. Phys, 28, 1461 (1995)Google Scholar
11. Tuck, B. and Christopoulos, C., Physical Electronics, (Eduard Arnolds, 1986)Google Scholar
12. Heinisch, H. K., Semiconductor Contacts, (Clarendon Press, 1984)Google Scholar
13. Visschere, P. De, Solid St. Electronics, 29, 873 (1986)Google Scholar
14. Kao, K.C. and Hwang, W., Electrical Transport in Solids, (Pergamon, 1981)Google Scholar
15. Mark, P. and Helfrich, W., J. Appl. Phys. 33, 205 (1962)Google Scholar
16. Brütting, W., Berleb, S. and Mückl, A.G., Synthetic Metals, 122, 99 (2001)Google Scholar
17. Zhou, Xiang, Nollau, Andreas, Blochwitz, Jan, Pfeiffer, Martin, Fritz, Torsten and Leo, Karl, Mat. Res. Soc. Symp. Proc. Vol. 660 (2002)Google Scholar
18. Ohmari, Yutaka, Tsukagawa, Takahisa and Kajii, Hirotake, Mat. Res. Soc. Symp. Proc. Vol. 660 (2002)Google Scholar