Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T04:32:58.878Z Has data issue: false hasContentIssue false

Greatly Reduced Leakage Current in Ti- and La-doped Bi2FeCrO6 Prepared by High Pressure Synthesis

Published online by Cambridge University Press:  17 August 2011

Feiming Bai
Affiliation:
State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China, 610054
Lihong Dai
Affiliation:
State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China, 610054
Lei Shi
Affiliation:
State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China, 610054
Huaiwu Zhang
Affiliation:
State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China, 610054
Get access

Abstract

Undoped Bi2FeCrO6, 5%Ti- and 10%La-doped Bi2FeCrO6 were prepared by a high pressure solid-state sintering method. The phase structure, electrical, ferroelectric and magnetic properties have been investigated. It is shown that undoped Bi2FeCrO6 has a serious leakage current problem, and doping either Ti or La can enhance the resistivity by 2-3 orders of magnitude. Furthermore, both Ti- and La-doped Bi2FeCrO6 show an antiferromagnetic spin order due to disordered B-site cation alignment. Weak ferromagnetism was only observed in undoped Bi2FeCrO6 and the reason is tentatively explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmid, H. Ferroelectrics, 162, 665 (1994).Google Scholar
2. Fiebig, M. J. Phys. D: Appl. Phys, 38, R123 (2005).Google Scholar
3. Eerenstein, W., Mathur, N. D., Scott, J. F., Nature, 442, 759 (2006).Google Scholar
4. Hill, N. A., J. Phys. Chem.B, 104, 6694 (2000).Google Scholar
5. Baettig, P., Ederer, C., and Spaldin, N. A.. Phys. Re. B, 72, 214105 (2005).Google Scholar
6. Nechache, R., Carignan, L. P., Gunawan, L., Harnagea, C., Botton, C. A., Menard, D., and Pignolet, A.. J. Mater. Res, 22, 2102 (2007).Google Scholar
7. Ichikawa, N., Arai, M., Imai, Y., Hagiware, K., Sakama, H., Azuma, M., Shimakawa, Y., Takano, M., Kotaka, Y., Yonetani, M., Fujisawa, H., Shimizau, M., Ishikawa, K., and Cho, Y., Appl. Phys. Express 1, 101302 (2008)Google Scholar
8. Kim, D. H., Lee, H. N., Biegalski, M. D., Christen, H. M., Appl. Phys. Letts, 91, 042906 (2007).Google Scholar
9. Suchomel, M. R., Thomas, C. I., Allix, M., Rosseinsky, M. J. and Fogg, A. M., Appl. Phys. Letts, 90, 112909 (2007).Google Scholar
10. Fang, L. M., He, D. W., Chen, C., Ding, L. Y., Luo, X. J., High Pressure Res. 27, 367 (2007).Google Scholar
11. Peter, W. M., Ivan, C. G., Georoe, C. K., J. Geophys. Res. 80, 1519 (1975).Google Scholar
12. Bai, F., Wang, J., Pyatakov, A.P., Li, J., Wang, N., Cross, L.E., Wuttig, M., Zvezdin, A.K., and Viehland, D., Appl. Phys. Lett., 86, 032511 (2005).Google Scholar
13. Switzer, J.A., Shumsky, M.G., Bohannan, E.W., Science 284, 293 (1999).Google Scholar
14. Fruth, V., Popa, M., Berger, D., Ionica, C.M., Jitianu, M., J. Eur. Ceram. Soc. 24, 1295 (2004).Google Scholar
15. Qi, X. D., Dho, J., Tomov, R., Blamire, M. G., and MacManus-Driscoll, J. L., Appl. Phys. Lett. 86, 062903 (2005)Google Scholar
16. Gu, Y., Wang, Y., Chen, F., Chan, H. L. W., and Chen, W. P., J. Appl. Phys. 108, 094112 (2010)Google Scholar
17. Lee, Y., Wu, J., and Lai, C., Appl. Phys. Letts. 88, 042903 (2006)Google Scholar
18. Béa, H., Bibes, M., Fusil, S., Bouzehouane, K. et al. . Phys. Rev. B 74, 020101 (2006)Google Scholar