Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:10:55.806Z Has data issue: false hasContentIssue false

Graphene Oxide as a Two-dimensional Surfactant

Published online by Cambridge University Press:  06 September 2011

Andrew R. Koltonow
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Jaemyung Kim
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Laura J. Cote
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Jiayan Luo
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Jiaxing Huang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Get access

Abstract

Graphene oxide (GO) is a nonstoichiometric two-dimensional material obtained from the chemical oxidation and exfoliation of graphite, which has recently attracted intense research interest as a precursor for bulk production of graphene. GO has long been believed to be hydrophilic due to its dispersibility in water. Recent work in our group, however, has found that GO is actually a two-dimensional amphiphile; the edge of the sheet-like material is hydrophilic, while the basal plane of the material contains more hydrophobic graphitic nanodomains. To prove the concept, we demonstrate GO’s surface activity at an air-water interface, as well as its utility in dispersing insoluble aromatic materials such as toluene, graphite, and carbon nanotubes in water. As a colloidal surfactant which can be converted to a conducting material, GO presents unique possibilities for aqueous solution processing of organic electronic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cote, L. J., Kim, F., Huang, J., J. Am. Chem. Soc., 131, 1043 (2009).Google Scholar
2. Hummers, W. S. and Offeman, R. E., J. Am. Chem. Soc., 80, 1339 (1958).Google Scholar
3. Lerf, A., He, H.Y., Forster, M., Klinowski, J., J. Phys. Chem. B 102, 4477 (1998).Google Scholar
4. Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M., Nat. Chem. 1, 403 (2009).Google Scholar
5. Dobelle, W. H., Beer, M., J. Cell Biol. 39, 733 (1968).Google Scholar
6. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., Carbon 45, 1558 (2007).Google Scholar
7. Croft, R.C., Quarterly Rev. 14, 1 (1960).Google Scholar
8. Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., Aksay, I.A., J. Phys. Chem. B 110, 8535 (2006).Google Scholar
9. Cote, L.J., Cruz-Silva, R., Huang, J. J. Am. Chem. Soc. 131, 11027 (2009).Google Scholar
10. Gilje, S, Dubin, S., Badakhshan, A., Farrar, J., Danczyk, S.A., Kaner, R.B., Adv. Mater. 22, 419 (2010).Google Scholar
11. Wang, Z., Zhou, X., Zhang, J., Boey, F., Zha, H., J Phys. Chem. C 113, 14071 (2009).Google Scholar
12. Ramesha, G.K., Sampath, S., J. Phys. Chem. C 113, 7985 (2009).Google Scholar
13. Allen, M.J., Tung, V.C., Kaner, R.B., Chem. Rev. 110, 132 (2010).Google Scholar
14. Park, S., Ruoff, R.S., Nat. Nanotechnol. 4, 217 (2009).Google Scholar
15. Compton, O.C., Nguyen, S.T., Small 6, 711 (2010).Google Scholar
16. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., Nature 448, 457 (2007).Google Scholar
17. Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B., Nano Lett. 7, 3394 (2007).Google Scholar
18. Li, D., Kaner, R.B. Science 320, 1170 (2008).Google Scholar
19. Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Nat. Nanotechnol. 3, 101 (2008).Google Scholar
20. Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., Zettl, A., Adv. Mater. 22, 4467 (2010).Google Scholar
21. Myers, D., Surfactant Science and Technology, Wiley-Interscience, Hoboken, NJ (2006).Google Scholar
22. Lipp, M.M., Lee, K.Y.C., Zasadzinski, J.A., Waring, A.J., Rev. Sci. Instrum. 68, 2574 (1997).Google Scholar
23. Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., Huang, J., J. Am. Chem. Soc. 132, 8180 (2010).Google Scholar
24. Pickering, S.U., J. Chem. Soc. 91, 2001 (1907).Google Scholar
25. Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G., Nano Lett. 3, 269 (2003).Google Scholar
26. Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y., Nano Lett. 3, 1379 (2003).Google Scholar
27. Grossiord, N., Loos, J., Regev, O., Koning, C.E., Chem. Mater. 18, 1089 (2006).Google Scholar
28. Vaisman, L., Wagner, H.D., Marom, G., Adv. Colloid Interface Sci. 128, 37 (2006).Google Scholar
29. Cote, L.J., Kim, J., Tung, V.C., Luo, J., Kim, F., Huang, J., Pure Appl. Chem. 83, 1, 95 (2011).Google Scholar
30. Luo, J., Cote, L.J., Tung, V.C., Tan, A.T.L., Goins, P.E., Wu, J., Huang, J., J. Am. Chem. Soc., 132, 17667 (2010).Google Scholar
31. Tung, V.C., Huang, J.H., Tevis, I., Kim, F., Kim, J., Chu, C.W., Stupp, S.I., Huang, J., J. Amer. Chem. Soc., 133, 4940 (2011).Google Scholar