Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:35:29.401Z Has data issue: false hasContentIssue false

Grain-Coarsening Resistance and The Stability of Second-Phase Dispersions in Rapidly Solidified Steels

Published online by Cambridge University Press:  15 February 2011

G. B. Olson
Affiliation:
MIT, Cambridge, MA;
H. C. Ling
Affiliation:
MIT, Cambridge, MA; now at Western Electric Engineering Research Labs., Princeton, NJ, USA
J. S. Montgomery
Affiliation:
MIT, Cambridge, MA;
J. B. Vander Sande
Affiliation:
MIT, Cambridge, MA;
M. Cohen
Affiliation:
MIT, Cambridge, MA;
Get access

Abstract

Control of alloy composition and processing to achieve grain coarsening resistance in rapidly solidified alloys is examined via the theory of grain boundary pinning and particle coarsening. The principles are illustrated for the case of manganese sulfides in steels. A thermodynamic survey of potential stable dispersed phases identifies TiN and rare-earth sulfides as particularly promising for alloy development via rapid solidification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Suga, M., Goss, J. L., Olson, G. B., and Vander Sande, J. B., Proc. 2nd Intl. Conf. Rapid Solidification Processing: Principles and Technologies (Claitor's, Baton Rouge, 1980) pp. 364371Google Scholar
2.Fleyshman, P. M., M.I.T. Thesis research in progress.Google Scholar
3.Gladman, T., Proc. Roy. Soc. A 294, 298 (1966).Google Scholar
4.Ashby, M. F., Harper, J., and Lewis, J., Trans. AIME 245, 413 (1969).Google Scholar
5.Hellman, P. and Hillert, M., Scandinavian Journal of Metallurgy 4, 211 (1975).Google Scholar
6.Zener, C., quoted by C. S. Smith, Trans, AIME 175 47 (1948).Google Scholar
7.Gladman, T. and Pickering, F. B., J. Iron Steel Inst. 205, 653 (1967).Google Scholar
8.Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
9.Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
10.Bhattacharyya, S. K. and Russell, K. C., Met. Trans. 3, 2195 (1972).Google Scholar
11.Jones, H., Proc. 2nd Intl. Conf. Rapid Solidification Processing: Principles and Technologies (Claitor's, Baton Rouge, 1980) pp. 306316.Google Scholar
12.Turkdogan, E. T., Ignatowicz, S., and Pearson, J., J. Iron and Steel Inst. 180, 349 (1955).Google Scholar
13.Smith, A. F. and Hales, R., Metal Science 9, 181 (1975).Google Scholar
14.Krishtal, M. A., Diffusion Processes in Iron Alloys, p. 177, trans. from Russian by Wald, A., ed. J.J. Becker, Israel Program for Federal Scientific Translations, available Clearinghouse for Federal Scientific and Technical Information, Springfield, VA (1970).Google Scholar
15.Kelly, T. F. and Vander Sande, J. B., Proc. 2nd Intl. Conf. Rapid Solidification Processing: Principles and Technologies (Claitor's, Baton Rouge, 1980) pp. 100–111.Google Scholar
16.Irvine, K. J., Pickering, F. B., and Gladman, T., J. Iron and Steel Inst. 205, 161 (1967).Google Scholar
17.Matsuda, S. and Okumura, N., “Tetsu-to-Hagane,” J. Iron and Steel Inst. Japan 62, 1209 (1976).Google Scholar
18. J.A.N.A.F. Thermochemical Tables, 2nd ed. (1970).Google Scholar
19.Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon, NY, 1979).Google Scholar
20.Elliott, J. F., Gleiser, M., and Ramakrishna, V., Thermochemistry for Steelmaking Vol. II (Addison-Wesley, MA, 1963).Google Scholar
21.Wilson, W. G., Kay, D. A. R., and Vahed, A., J. Metals, May 1974, p. 14.Google Scholar
22. Manlabs-NPL Thermochemical Databank.Google Scholar
23.Hoch, M. and Chen, Y. S., in The Industrial Use of Thermochemical Data p. 312.Google Scholar
24.Banerji, S. K., McMahon, C. J., and Feng, H. C., Met. Trans. 9A, 237 (1978).Google Scholar