Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T21:57:33.589Z Has data issue: false hasContentIssue false

Grain-Boundary, Glassy-Phase Identification and Possible Artifacts

Published online by Cambridge University Press:  25 February 2011

Y. Kouh Simpson
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
C. B. Carter
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
P. Sklad
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
J. Bentley
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
Get access

Abstract

Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpereting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clarke, D. R., Ultramicroscopy, 4, 33 (1979).CrossRefGoogle Scholar
2. Simpson, Y. Kouh, Carter, C. B., Morrissey, K.J., Angelini, P. and Bentley, J., J. Mat. Sci., In Press (1985).Google Scholar
3. Morrissey, K. J. and Carter, C. B., J. Am. Ceram. Soc., E7, (4), 292 (1984).Google Scholar
4. Carter, C. B. and Morrissey, K. J., Advances in Ceramics, 10, 303,(1984).Google Scholar
5. Ruhle, M., private communication (1985).Google Scholar
6. Howitt, D. G., J. Elect. Mic. Tech., 1, (4), 405 (1984).Google Scholar
7. Schwartz, J. T., private communication (1985).Google Scholar
8. Rüihle, M. and Sass, S. L., Phil. Mag. A., 42, (6), 759(1984).Google Scholar
9. Boothroyd, C. B. and Stobbs, W. M., Phil. Mag. A., 42,(1), L5–L8 (1984).Google Scholar
10. Stobbs, W. M. and Smith, D. J., Inst. Phys. Conf. Ser. 61. 373(1981).Google Scholar
11. Elgat, Z., PhD Thesis, Cornell Univ., Ithaca, NY (1985).Google Scholar
12. Iijima, S., Optik, 47(4), 437 (1977).Google Scholar
13. Johnson, W. C., Stein, D. F. and Rice, R. W., 4th Bolton Landing Conf., 261(1974).Google Scholar
14. Johnson, W. C. and Coble, R. L., J. Am. Ceram. Soc., 61(3–4), 110(1978).Google Scholar
15. Kingery, W. D., Pure & Appl. Chem., 56(12), 17031714(1984).Google Scholar
16. Baik, S., Fowler, D. E., Blakely, J. M. and Raj, R., J. Am. Ceram. Soc., 68,(5), 281(1985).Google Scholar
17. Mitra, S., private communication (1985).Google Scholar