Published online by Cambridge University Press: 01 February 2011
The grain size distribution allows characterizing quantitatively the microstructure at different stages of crystallization of an amorphous solid. We propose a generalization of the theory we established for spherical grains, to the case of grains with ellipsoidal shape. We discuss different anisotropic growth mechanisms of the grains in thin films. An analytical expression of the grain size distribution is obtained for the case where grains grow through a change of volume while keeping their shape invariant. The resulting normalized grain size distribution is shown to be affected by anisotropy through the time-decay of the effective growth rate.