Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:39:19.037Z Has data issue: false hasContentIssue false

Grain Boundary Precipitate Density as a Function of Time and Misorientation in an Al-5 WT% Cu Alloy

Published online by Cambridge University Press:  21 February 2011

M. A. Cantrell
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903
G. J. Shiflet
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903
Get access

Abstract

The variation of θ (CuAI2) precipitate density as a function of heat treatment time and grain boundary misorientation was investigated in an Al-5 wt % Cu alloy. In this study, precipitate densities have been quantitatively linked to grain boundary structure. It was found that, for a given heat treatment time, the precipitate density varied in a reproducible manner (108 to 1010 ppts/cm2) as a function of misorientation between the grains (20 to 60 degrees). Additionally, misorientation was found to be the most important factor governing the precipitate density at a given grain boundary. The grain boundary plane orientation played a secondary role in determining the precipitate density. Bollmann O-lattice modeling allows comparison of the relative effects of grain boundary plane orientation relative to the misorientation between grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Gronsky, R. and Furrer, P., Met. Trans. A, 12A, 121(1981).CrossRefGoogle Scholar
2) Enomoto, M. and Aaronson, H. I., Met. Trans. A, 17A, 1385(1986).Google Scholar
3) Lang, W., Ph.D. Thesis, Michigan Technological University, Houghton, MI (1979).Google Scholar
4) Forwood, C. T. and Clarebrough, L. M., Metals Forum 8(2 and 3) (1985).Google Scholar
5) Vaughan, D., Acta Met, 16 563(1968).CrossRefGoogle Scholar
6) Forest, B. and Biscondi, M., Metal Sci. 202 (1978).Google Scholar
7) Vaughan, D., Acta Met., 18, 183 (1970).CrossRefGoogle Scholar
8) Park, J. K. and Ardell, A. J., Acta Met. 34 (12) 23992409 (1986).CrossRefGoogle Scholar
9) Coze, J. Le, Biscondi, M., Levy, J., and Goux, C., Memories Scientifiques Rev. Metallurg., LXX No. 5, (1973).Google Scholar
10) Coze, J. Le and Goux, C., Acad. Sc. Paris, t. 271 serie C - 1225 (1970).Google Scholar
11) Pond, C. and Bollmann, W., Phil. Trans. R. Soc. Lond., ser. A, Sci. 292. a 1395 (1979).Google Scholar
12) Cantrell, M. A. and Shiflet, G. J. Defect - Interface Interactions edited by Kvan, E. P., Sands, T. D., Mills, M. J., Vitek, V., King, A. H., (MRS, 319, Pittsburgh, PA 1994, Cb6.8).Google Scholar
13) Butler, E. P. and Swann, P. R., Acta Met., 24, 343352 (1975).CrossRefGoogle Scholar
14) Clark, W. A. T. and Smith, D. A., Phil. Mag. A, 38, (4) 367385 (1978).Google Scholar
15) Bollmann, W., Surface Science 31 (1972).Google Scholar
16) Smith, D. A. and Pond, R. C., International Metals Reviews 205 (1976).Google Scholar
17) Karakostas, W., Nouet, G., and Delavignette, P., Phys. Stat. Sol. (a), 52, 65 (1979).Google Scholar
18) Read, W. T. and Shockley, W., Physical Review 78, (3), (1950).Google Scholar
19) Gudmundsson, H., Brooks, D.D., and Wert, J.A., ActaMet., 39, 19 (1991).Google Scholar
20) Brooks, D.D., Gudmundsson, H., and Wert, J.A., Hot Deformation of Aluminum Alloys, edited by Langdon, T.G., Merchant, H.D., Morris, J.G., Zaidi, M.A., (TMS, 55, Warrendale, PA 1991) pp. 5588.Google Scholar