Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:21:30.780Z Has data issue: false hasContentIssue false

Grafting of Polyaniline onto the Surface of Amino-Functionalized Multi-Walled Carbon Nanotube via Interfacial Polymerization

Published online by Cambridge University Press:  31 January 2011

In-yup Jeon
Affiliation:
Jong-beom Baek
Affiliation:
[email protected], Ulsan National Institute of Science and Technology, 1School of Energy Engineering, Ulsan metropolitan city, Korea, Republic of
Get access

Abstract

The mixture of polyaniline (PANi) and PANi grafted multi-walled carbon nanotube (PANi-g-MWNT) was prepared by two step reaction sequences. MWNT was first functionalized with 4-aminobenzoic acid via “direct” Firedel-Crafts acylation in polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5) medium to afford aminobenzoyl-functionalized MWNT (AF-MWNT). Then, aniline was polymerized via in-situ static interfacial polymerization in H2O/CH2Cl2 in the presence of AF-MWNT in organic phase to yield the mixture of PANi and PANi-g-MWNT. The mixture was characterized with a various analytical techniques such as Fourier transform infrared spectroscopy (FT-IR), wide angle x-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammogram (CV). Even after dedoping, the mixture displayed semimetallic conductivity (4.9 S/cm). The capacitance of the mixture was also greatly enhanced and its capacitance decay with respect to cycle times was significantly reduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1(a) Skotheim, T. A. Elsenbaumer, R. L. and Reynolds, J. R. Handbook of Conducting Polymer Polymers, 2nd ed. (Marcel Dekker, New York, 1997), pp. 8231074. (b) A. K. Bakhshi, Bull. Mater. Sci. 18, 469 (1995).Google Scholar
2(a) Huang, W. S. Humphrey, B. D., and MacDiarmid, A. G. J. Chem. Soc. Faraday Trans. 82, 2385 (1986). (b) J. Huang, J. A. Moore, J. H. Acquaye Acquaye, and R. B. Kaner, Macromolecules 38, 317 (2005). (c) A. G. MacDiarmid, Angew. Chem. Int. Ed. 40, 2581 (2001).Google Scholar
3 Wang, Y. Liu, Z. Han, B. Sun, Z. Huang, Y., and Yang, G. Langmuir 21, 833 (2005). (b) H. Ding, M. Wan Wan, and Y. Wei, Adv. Mater. 19, 465 (2001).Google Scholar
4(a) Gao, H. Jiang, T. Han, B. Wang, Y. Du, J. Liu, Z., and Zhang, J., Polymer 45, 3017 (2004). (b) X. Zhang, R. Chan-Yu-King, A. Jose Jose, and S. K. Manohar, Synth. Met. 145, 23 (2004).Google Scholar
5(a) Frackowiak, E. Khomenko, V. Jurewica, K. Lota, K., and Béguin, F., J. Power Sources 153, 413 (2006). (b) M. Wu G. A. Snook, V. Gupta, M. Shaffer, D. J. Fray Fray, and G. Z. Chen, J. Mater. Chem. 15, 2297 (2005).Google Scholar
6(a) Ajayan, P. M. Chem. Rev. 99, 1787 (1999). (b) S. B. Sinnott, J. Nanosci. Nanotech. 2, 113 (2002). (c) Q. Zhao, Z Z. Gan Gan, and Q. Zhuang, Electroanalysis 14, 1609 (2002). (d) P. M. Ajayan and Q. Z. Zhou, Top. Appl. Phys. 80, 391 (2001).Google Scholar
7(a) Mottaghitalab, V., Spinks, G. M., and Wallace, G. G. Synth. Met. 152, 77 (2005). (b) Y. Qiao, C. M. Li, S.J. Bao, and Q.L. Bao, J. Power Sources 170, 79 (2007).Google Scholar
8http://hnt.hanwhananotech.co comGoogle Scholar
9 Lee, H.J. Han, S.W. Kwon, Y.D. Tan, L L.S., and Baek, J.B. Carbon 46, 1850 (2008).Google Scholar
10 Jiaxing, H. and Richard, B. K. J. Am. Chem. Soc. 126, 851 (2004).Google Scholar