No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Nanotechnology has the potential to greatly improve our lives through medical, environmental and consumer products. Properties at the nanoscale are being exploited in new products, but they could also influence how the particles interact with humans and the environment. There is increasing consensus that for nanotechnology to reach its maximum potential, we must work to understand the hazards and exposure routes in order to minimise the risks. Good practice, founded on the principles of risk assessment and industrial hygiene, are applicable to a wide range of nanomaterials and nanostructured materials including nanoparticles, nanofibres, nanopowders, nanotubes, as well as aggregates and agglomerates of these materials. There is still considerable uncertainty about many aspects of effective risk assessment of nanomaterials, including the hazardous potential of many types of nanoparticles and the levels below which individuals might be exposed, with minimal likelihood of adverse health effects. It is prudent therefore to understand how to develop an appropriate strategy for the risk assessment, handling and disposing of nanomaterials, in the light of known and unknown hazards and exposures. This paper presents a perspective of the key components of risk assessment applicable to nanotechnology and novel materials.