Article contents
Glass-Iron-Clay interactions in a radioactive waste geological disposal: a multiscale approach
Published online by Cambridge University Press: 23 January 2013
Abstract
In France, nuclear glass canisters arising from spent fuel reprocessing are expected to be disposed in a deep geological repository using a multi-barrier concept (glass/canister/steel overpack and claystone). In this context, glass - iron or corrosion products interactions were investigated in a clayey environment to better understand the mechanisms and driving forces controlling the glass alteration. Integrated experiments involving glass - metallic iron or magnetite - clay stacks were run at laboratory scale in anoxic conditions for two years. The interfaces were characterized by a multiscale approach using SEM, TEM, EDX and STXM at the SLS Synchrotron. Characterization of glass alteration patterns on cross sections revealed various morphologies or microstructures and an increase of the glass alteration with the proximity between the glass and the source of iron (metallic iron or magnetite) due to the consumption of the silica coming from the glass alteration. In case of magnetite, the silica consumption is mainly driven by a sorption of silica onto the magnetite. For experiments containing metallic iron, the silica consumption seems to be strongly driven by silicates precipitation including Fe and Fe/Mg when the Fe is not enough available. Moreover, in addition to Fe-silicates observed at the surface of the gel layers, iron is incorporated within the gel probably as nanosized precipitates of Fe-silicates which could affect its physical and chemical properties. Those results highlighted the impact of the distance between glass and iron source and the nature of the iron source which drive the process consuming the silica coming from the glass alteration.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2013
References
REFERENCES
- 8
- Cited by