Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:32:02.751Z Has data issue: false hasContentIssue false

Glass Transition and Ultrasonic Relaxation in Polystyrene

Published online by Cambridge University Press:  10 February 2011

A. Sahnoune
Affiliation:
National Research Council Canada, Industrial Materials Institute, 75, de Mortagne, Boucherville, Québec J4B 6Y4 CANADA, [email protected]
L. Piché
Affiliation:
National Research Council Canada, Industrial Materials Institute, 75, de Mortagne, Boucherville, Québec J4B 6Y4 CANADA, [email protected]
Get access

Abstract

We present measurements of the glass transition and the ultrasonic relaxation modulus in a series of monodisperse polystyrenes. The temperature dependence of the modulus was analyzed using Havriliak-Negami relaxation model (HN) and Vogel-Tammann-Fulcher equation (VTF) for the relaxation time. The results allowed us to determine the fragility index, m, which decreases with increasing molecular weight, Mn. Furthermore, the relaxation time was found to saturate at high molecular weights and varies as Mnp, in the low molecular weight region. The exponent is p≈2 at high temperatures and p ≈ 7 at low temperatures close to Tg.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Proc. of the 2nd International Discussion Meeting on “Relaxation in Complex Systems”, J. Non-cryst. Solids 172174, (1994).Google Scholar
2. Sahnoune, A., Massines, F., and Piché, L., J. Polym. Sci., Part B: Polym. Phys., 34, 341 (1996).Google Scholar
3. Massines, F., Piché, L., and Lacabanne, C., Makromol. Chem. Macromol. Symp., 23, 121 (1989).Google Scholar
4. Gruber, G. J. and Litovitz, T. A., J. Chem. Phys., 40, 13 (1964).Google Scholar
5. Havriliak, S. and Negami, S., Polymer, 8, 161 (1967).Google Scholar
6. Vogel, H., Phys. Z., 22, 645 (1921);Google Scholar
Fulcher, G.S., J. Am. Chem. Soc., 8, 789 (1925).Google Scholar
7. Angeli, C. A. (submitted to Macromolecules).Google Scholar
8. Eisenberg, A., in Physical Properties of Polymers, 2nd ed., American Chemical Society, Washington, 1993, p. 61.Google Scholar
9. Fox, T. G. and Flory, P. J., J. Polym. Sci. 14, 315 (1954).Google Scholar
10. Angell, C. A., J. Non-cryst. Solids, 131–134, 13 (1991).Google Scholar
11. Böhmer, R. and Angeli, C. A., in Disorder Effects on Relaxational Processes, Richert, R. and Blumen, A. (eds.), Springer, Berlin, 1994, p. 11.Google Scholar
12. Wilson, M., Madden, P. A., Hemmati, M., and Angell, C. A., Phys. Rev. Lett., 77, 4023 (1996).Google Scholar
13. Matsuoka, S., in Relaxation Phenomena in Polymers, Hanser Publishers, Munich, 1992, p. 160.Google Scholar
14. Doi, M. and Edwards, S. F., in The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986, p. 335.Google Scholar