Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T04:04:23.306Z Has data issue: false hasContentIssue false

Glass Optical Guided-Wave Technology

Published online by Cambridge University Press:  28 February 2011

T. Miyashita*
Affiliation:
N.T.T., Ibaraki Electrical Communication LaboratoriesNippon Telegraph and Telephone Corporation Tokai, Ibaraki, Japan 319–11
Get access

Abstract

Recent advances of glass materials and fabrication processes will be reviewed in the field of guided-wave technology. A variety of optical fibers and guided-wave devices are in development by using high-silica and non-silica glasses. Following the successful development of silica fiber, a new family of optical fibers is being investigated by using non-silica glasses such as fluoride and chalcogenide glasses, which operate at mid-infrared wavelength range and offer the potential of ultra-low loss. High-silica channel waveguides are fabricated by processing a SiO2TiO2 planer waveguide on a silicon substrate. These are applied to various guided wave optical circuits such as switch and wavelength-division multi/demultiplexer, which would be used for the construction of optical communication systems. The materials and processing techniques influencing optical guided-wave performance are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kapron, F.P., Keck, D.B. and Maurer, R.D., Appl. Phys. Lett. 17, 423 (1970)Google Scholar
2. Miyashita, T. and Manabe, T., IEEE. J. Quantum Electronics, QE–18, 1432 (1982)Google Scholar
3. Izawa, T., Shibata, N. and Takeda, A., Appl. Phys. Lett. 31, 33 (1977)Google Scholar
4. Shibata, S., Horiguchi, M., Jinguji, K., Mitachi, S., Kanamori, T. and Manabe, T., Electron. Lett. 17, 775 (1981)Google Scholar
5. Izawa, T. and Inagaki, N., Proc. IEEE. 68, 1184 (1980)CrossRefGoogle Scholar
6. Inagaki, N., Edahiro, T. and Nakahara, M., Japan. J. Appl. Phys. 20, Suppl 20–1, 175 (1980)Google Scholar
7. Poulain, M., Poulain, M., Lucas, J. and Brun, P., Mater, Res. Bull. 10, 243 (1975)Google Scholar
8. Kanamori, T. and Takahashi, S., Japan. J. Appl. Phys. 24, L758 (1985)CrossRefGoogle Scholar
9. Kanamori, T., Terunuma, Y., Takahashi, S. and Miyashita, T., J. Lightwave Tech. LT–2, 607 (1984)CrossRefGoogle Scholar
10. Hattori, T., Sato, S., Fujioka, T., Takahashi, S. and Kanamori, T., Electron. Lett. 20, 811 (1984)Google Scholar
11. Izawa, T., Mori, H., Murakami, Y. and Shimizu, N., Appl. Phys. Lett. 38, 483 (1981)Google Scholar
12. Izawa, T. and Nakagome, H., Appl. Phys. Lett. 21, 584 (1972)Google Scholar
13. Zembutsu, S. and Fukunishi, S., Appl. Opt. 18, 393 (1979)Google Scholar
14. Kawachi, M., Yasu, M. and Edahiro, T., Electron. Lett. 19, 583 (1983)Google Scholar
15. Kawachi, M., Yamada, Y., Yasu, M. and Kobayashi, M., Electron. Lett. 21, 314 (1985)Google Scholar
16. Kobayashi, M., Himeno, A. and Terui, H., Tech. Digest, IOOC-ECOC ‘85, PD 73, (1985)Google Scholar