Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T08:48:46.078Z Has data issue: false hasContentIssue false

Giant Thermoelectric Effect in Graded Micro-Nanoporous Materials

Published online by Cambridge University Press:  05 August 2013

Dimitrios G. Niarchos*
Affiliation:
Institute for Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Department of Materials Science, NCSR “Demokritos”, Athens, Greece
Roland H. Tarkhanyan
Affiliation:
Institute for Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Department of Materials Science, NCSR “Demokritos”, Athens, Greece
Alexandra Ioannidou
Affiliation:
Institute for Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Department of Materials Science, NCSR “Demokritos”, Athens, Greece
*
*Presenting Author. E-mail: [email protected]
Get access

Abstract

In this work we report on opportunities for a colossal reduction in lattice thermal conductivity (LTC) of graded micro-nanoporous structures with inhomogeneous porosity which leads to the considerable improvement in thermoelectric figure of merit ZT. We employ the effective medium theory to calculate the LTC of a porous media with hole pores of variable radius and show that porous materials with inhomogeneous porosity are expected to have stronger reduction (about 30 times!) in thermal conductivity than those with pores of equal sizes. Such a reduction is caused by enhanced scattering of thermal phonons with the pore boundaries. We have studied the variations of the LTC as a function of porosity, pore sizes, geometry and the number of pore groups with different sizes. Our theoretical results show excellent agreement with experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J. P., Gogna, P., Advanced Materials 19, 10431052 (2007).CrossRefGoogle Scholar
Li, J.F., Liu, W.S., Zhao, L.D., Zhou, M.,.Nature Asia Mater. 2, 152158 (2010).CrossRefGoogle Scholar
Hicks, L. D., Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
Ju, Y. S., Goodson, K. E., Appl. Phys. Lett. 74, 30053007 (1999).CrossRefGoogle Scholar
Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J. P., Caillat, T., Int. Mater. Rev. 48, 45-66 (2003).CrossRefGoogle Scholar
Liu, W., Asheghi, M., Appl. Phys. Lett. 84, 3819-3821(2004).CrossRefGoogle Scholar
Yu, J-K., Mitrovic, S., Tham, D., Varghese, J., Heath, J. R., Nature Nanotech. 5, 718721 (2010).CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B., Nature 413, 597602 (2001).CrossRefGoogle Scholar
Harman, T. C., Taylor, P. J., Walsh, M. P., LaForge, B. E., Science 297, 22292239 (2002).CrossRefGoogle Scholar
Maldovan, M., J. Appl. Phys. 110, 034308 (2011).CrossRefGoogle Scholar
Yu, Bo, Zebarjadi, M., Wang, Hui, Lukas, K., Wang, Hengzhi, Wang, D., Opeil, C., Dresselhaus, M., Chen, G., Ren, Z., Nano Lett. 12, 2077 (2012).CrossRefGoogle Scholar
Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., Wang, X., Dresselhaus, M., Ren, Z., and Chen, G., Nano Lett. 11, 2225 (2011).CrossRefGoogle Scholar
Katsuyama, S., Maezawa, F., Tanaka, T., J. Physics: Conference Series 379, 012004 (2012).Google Scholar
Biswas, K., He, J., Blum, I., Wu, C., Hogan, I., Seidman, D., Dravid, V. and Kanatzidis, M., Nature 489, 414 (2012).CrossRefGoogle Scholar
Tian, Z., Garg, J., Esfarjani, K., Shiga, T., Shiomi, J., Chen, G., Phys.Rev.B 85, 184303 (2012).CrossRefGoogle Scholar
Lee, H., Vashaee, D., Wang, D. Z., Dresselhaus, M. S., Ren, Z. F., Chen, G., J. Appl. Phys. 107, 094308 (2010).CrossRefGoogle Scholar
Maxwell-Garnet, J.C., Philos. Trans. R. Soc. London 203, 385420 (1904).CrossRefGoogle Scholar
Russel, H.W., J. Amer. Ceram. Soc. 18, 15 (1935).CrossRefGoogle Scholar
Bergman, D. J., Levy, O., J. Appl. Phys. 70, 68216833 (1991).CrossRefGoogle Scholar
Landauer, R., Electrical Transport and Optical Properties of Inhomogeneous Media, (AIP, New York, 1978) pp. 245.Google Scholar
Sumirat, I., Ando, Y. and Shimamura, S., J. Porous Mater. 13, 439443 (2006).CrossRefGoogle Scholar
Song, D., Chen, G., Appl. Phys. Lett. 84, 687689 (2004).CrossRefGoogle Scholar
Yang, R. G., Chen, G., Dresselhaus, M. S., Nano Lett. 5, 11111115 (2005).CrossRefGoogle Scholar
Vashaee, D., Shakouri, A., Phys. Rev. Lett. 92, 106103 (2004).CrossRefGoogle Scholar
Faleev, S.V., Leonard, F., Phys. Rev. B77, 214304 (2008).CrossRefGoogle Scholar
Callaway, J., Phys. Rev. 113, 10461051 (1959).CrossRefGoogle Scholar
Holland, M. G., Phys. Rev. 132, 24612471 (1963).CrossRefGoogle Scholar
Majumdar, A., J. Heat Transf. 115, 716 (1993).CrossRefGoogle Scholar
Chen, G., Phys. Rev. B57, 14958 (1998).CrossRefGoogle Scholar
Tarkhanyan, R. H. and Niarchos, D.G., Intern. J. of Thermal Sciences 67, 107112 (2013).CrossRefGoogle Scholar
Tang, J., Wang, H., Lee, D.H., Fardy, M., Huo, Z., Russell, T.P., Yang, P., Nano Lett. 10, 4279 (2010).CrossRefGoogle Scholar
Ioannidou, A., Tarkhanyan, R. and Niarchos, D., To be published 2013.Google Scholar