Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:35:03.398Z Has data issue: false hasContentIssue false

Giant Magnetoresistance of (001) Fe / (001) Cr Superlattices

Published online by Cambridge University Press:  03 September 2012

A. Barthelemy
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, F 91405 Orsay, France
M. N. Baibich
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, F 91405 Orsay, France
J. M. Broto
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, F 91405 Orsay, France
R. Cabanel
Affiliation:
Laboratoire Central de Recherches, Thomson CSF, BP 10, F 91401 Orsay, France
G. Creuzet
Affiliation:
Laboratoire Central de Recherches, Thomson CSF, BP 10, F 91401 Orsay, France
P. Etienne
Affiliation:
Laboratoire Central de Recherches, Thomson CSF, BP 10, F 91401 Orsay, France
A. Fert
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, F 91405 Orsay, France
A. Friederich
Affiliation:
Laboratoire Central de Recherches, Thomson CSF, BP 10, F 91401 Orsay, France
S. Lequien
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, F 91405 Orsay, France
F. Nguyen Van Dau
Affiliation:
Laboratoire Central de Recherches, Thomson CSF, BP 10, F 91401 Orsay, France
K. Ounadjela
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, F 91405 Orsay, France
Get access

Abstract

We recently reported the observation of a very large magnetoresistance in (001)Fe/(001)Cr superlattices grown by MBE. The magnetoresistance is found to be very large for thin Cr layers. We ascribe this magnetoresistance to a magnetic gate effect.

We recently reported the observation of a very large magnetoresistance in (001)Fe/(001)Cr superlattices with thin Cr layers [1]. A large magnetoresitance has also been observed in Fe/Cr/Fe sandwhiches [2]. In both cases, for Cr layers thinner than about 30 Å an antiparallel coupling of the magnetization of neighbor Fe layers is indicated by magnetic, magneto-optic and light scattering measurements [1–3]. It thus turns out that the large magnetoresistance os associated with the change to parallel alignment in an applied field. In this paper, we present new data on the magnetic and transport properties of Fe/Cr superlattics and we concentrate on the discussion of the microscopic origin of the magnetoresistance

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., Phys. Rev. Letters 61, 2472 (1968).Google Scholar
[2] Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W., to be published.Google Scholar
[3] Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., Sowers, H., Phys. Rev. Letters 57, 2442 (1986).Google Scholar
[4] Etienne, P., Creuzet, G., Friederich, A., Nguyen Van Dau, F., Fert, A. and Massies, J., Appl. Phys. Letters 5,. 162 (1968).Google Scholar
[5] Nguyen Van Dau, F., Fert, A., Hadjoudj, S., Etienne, P., Creuzet, G., Friederich, A., Proceeding of the International Conference on Magnetism. Paris, France, 1988 (to be published).Nguyen Van Dau, F., thesis (Orsay 1989, unpublished).Google Scholar
[6] Interface anisotropy effects turn out to be small, even for thin Fe 4 nM layers. The magnetization is in the layer plane and a field of about M is needed to align it in the perpendicular direction.Google Scholar
[7] The values of the saturation magnetization of our samples are scatter in the range 1300–1700 emu/cm3. The saturation magnetization of bulk Fe is 1700 emu/cm3. It may be that the lower value founds in Fe/Cr is due to a small negative contribution from Cr.Google Scholar
[8] Carbone, C. and Alvarado, S.F., Phys. Rev B36, 2433 (1987)Google Scholar
[9] Hinckey, L.L. and Mills, D.L., Phys. Rev. 633, 3329 (1986)CrossRefGoogle Scholar
[10] Fert, A. and Campbell, I.A., I. Phys. F6. 849 (1976).Google Scholar
[11] Camley, R.E. and Barnas, J., preprint.Google Scholar