Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T01:12:19.215Z Has data issue: false hasContentIssue false

Giant Magnetoresistance Calculated from First Principles

Published online by Cambridge University Press:  03 September 2012

W. H. Butler
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6114
James M. MacLaren
Affiliation:
Department of Physics, Tulane University, New Orleans, Louisiana 70118
X.-G. Zhang
Affiliation:
Center for Computational Sciences, University of Kentucky, Lexington, Kentucky 40506–0045
Get access

Abstract

The Layer Korringa Kohn Rostoker-Coherent Potential Approximation technique was used to calculate the low temperature Giant Magnetoresistance from first principles for Co|Cu and permalloy|Cu superlattices. Our calculations predict large giant Magnetoresis-tance ratios for Co|Cu and extremely large ratios for permalloy|Cu for current perpendicular to the layers. Mechanisms such as spin-orbit coupling which mix spin channels are expected to greatly reduce the GMR effect for permalloy|Cu.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., and Petroff, F., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. 39, 4828 (1989).Google Scholar
3. Parkin, S. S. P., More, N., Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
4. Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
5. Chaiken, A., Tritt, T. M., Gillespie, D. J., Krebs, J. J., Lubitz, P., J. Appl. Phys. 69, 4798 (1991).Google Scholar
6. Grünberg, P., Demokritov, S., Fuss, A., Volil, M., and Wolf, J. A., J. Appl. Phys. 69, 4789 (1991).Google Scholar
7. Dieny, B., Speriosu, V. S., Metin, S., Parkin, S. S. P., Guiney, B. A., Baumgart, P., and Wilhoit, D. R., J. Appl. Phys. 69, 4774 (1991).Google Scholar
8. Dieny, B., Speriosu, V. S., Parkin, S. S. P., Guiney, B. A., Wilhoit, D. R., and Mauri, D., Phys. Rev. B 43, 1297 (1991).Google Scholar
9. Camely, R. E., and Barnás, J., Phys. Rev. Lett. 63, 664 (1989).Google Scholar
10. Barnás, J., Fuss, A., Carnley, R. E., Grünberg, P., and Zinn, W.. Phys. Rev. B 42, 8110 (1990).Google Scholar
11. Fuchs, K., Proc. Cambridge Philos. Soc. 34, 100 (1938).Google Scholar
12. Sondheimer, E. H., Adv. Phys. 1, 1 (1952).Google Scholar
13. Levy, P. M., Zhang, S., and Fert, A., Phys. Rev. Lett. 65, 1643 (1990).Google Scholar
14. Zhang, S., Levy, P. M., J. Appl. Phys. 69, 4786 (1991).Google Scholar
15. MacLaren, J. M., Crampin, S., Vvedensky, D. D. and Pendry, J. B., Phys. Rev. B 40, 12164 (1989).Google Scholar
16. Hohenberg, P. and Kohn, W., Phys. Rev. 136 B, 864 (1964).Google Scholar
17. Kohn, W. and Sham, L. J., Phys. Rev. B 140, A1133 (1965).Google Scholar
18. Soven, P., Phys. Rev. 156, 809 (1967).Google Scholar
19. Taylor, D. W., Phys. Rev. 156 1017 (1967).Google Scholar
20. Faulkner, J. S., Prog. Mat. Sci. 27, 1 (1982).Google Scholar
21. Butler, W. H., Phys. Rev. B, 31, 3260 (1985).Google Scholar
22. Butler, W.H. and Stocks, G. M., Phys. Rev. B, 29, 4217 (1984).Google Scholar
23. Swihart, J. C., Butler, W. H., Stocks, G. M., Nicholson, D. M., and Ward, R. C., Phys. Rev. Lett. 57, 1181 (1986).Google Scholar
24. van den Berg, G. J., van Hook, J., Knook, B., Proc. L.T. 10 4, 272 (1966).Google Scholar
25. Hugel, J., J. Phys. F 3, 1723 (1973).Google Scholar
26. Smit, J., Physica, 21, 877 (1955).Google Scholar
27. Mertig, I., Zeller, R., and Dederichs, P. H., in Application of Multiple Scattering Theory to Materials Science, edited by Butler, W. H., Gonis, A., Dederichs, P. H., and Weaver, R., MRS Symposia Proceedings No. 253 (Materials Research Society, Pittsburg, 1992)Google Scholar
28. Farrell, T. and Greig, D., J. Phys. C: Solid St. Phys. 1, 1359 (1968).Google Scholar