Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T13:50:59.626Z Has data issue: false hasContentIssue false

Giant Hall Effect and Spin-Dependent Transport in Granular NiFe-SiO2 Films

Published online by Cambridge University Press:  10 February 2011

X. Yan
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, [email protected].
A. B. Pakhomov
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, [email protected].
X. N. Jing
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, [email protected].
S. K. Wong
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, [email protected].
Get access

Abstract

In granular NiFe-SiO2 films which display giant Hall effect, extraordinary Hall resistivity ρxys, normal Hall resistivity ρxyo, and magnetoresistivity δρ, were all found to follow power lav dependencies on resistivity ρ. Namely, -ρxys ∼ ρ0.81, -ρxyo ∼ ρ0.64 and -δρ ∼ ρ1.15. We propose that the presence of nanometer sized particles in the percolating conduction channels gives rise to I giant enhancement for both ordinary and extraordinary Hall effect in magnetic metal-insulator nanocomposite films. This physical picture describes qualitatively well the general features of GHE, and its correlation with resistivity and magnetoresistivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M. N., et al., Phys. Rev. Lett., 61, 2472 (1988).Google Scholar
2. Binasch, G., Grunberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
3. Kerbs, J. J., Lubitz, P., Chaiken, A., and Prinz, G. A., Phys. Rev. Lett. 63, 1645 (1989).Google Scholar
4. Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett., 64, 2304 (1990).Google Scholar
5. Camley, R. E. and Barnas, J., Phys. Rev. Lett. 63, 664, (1989).Google Scholar
6. Levy, P. M., Zhang, S. and Fert, A., Phys. Rev. Lett., 65, 1643 (1990).Google Scholar
7. Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A., and Thomas, G., Phys. Rev. Lett. 68, 3745 (1992).Google Scholar
8. Xiao, J. Q., Jiang, J. S., and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
9. Fujimori, H., Mitani, S., and Ohnuma, S., to appear in J. Mag. Mag. Mat. 1996.Google Scholar
10. Gittleman, J. I., Goldstein, Y. and Bozowski, , Phys. Rev. B 5, 3609 (1972);Google Scholar
Abeles, B., Sheng, P., Couts, M. D., and Arie, Y., Adv. Phys. 24, 407 (1975);Google Scholar
Abeles, B., Pinch, H. L., and Gittleman, J. I., Phys. Rev. Lett. 35, 247 (1975).Google Scholar
11. Pakhomov, A. B., Yan, X., and Zhao, B., Appl. Phys. Lett. 67, 3497 (1995).Google Scholar
12. Jing, X. N., Wang, N., Pakhomov, A. B., Fung, K. K., and Yan, X., Phys. Rev. B53, 14023 (1996).Google Scholar
13. Bergman, D. J. and Stroud, D., Sol. St. Phys. 46, 149 (1992).Google Scholar
14. Pakhomov, A. B., and and Yan, X., Sol. St. Commun. 99, 139 Physica A (1996).Google Scholar
15. Pakhomov, A. B., Yan, X., and Xu, Y., J. Appl. Phys. 79, 6140 (1996).Google Scholar
16. Campbell, L. A. and Fert, A., in Ferromagnetic materials, Vol. 3, edited by Wohlfarth, E. P. (North-Holland, Amsterdam, 1982);Google Scholar
Fert, A., and Lottis, D. K., in Concise Encyclopedia of Magnetic and Superconducting Materials, edited by Evetts, J., (Pergamon Press, Oxford; New York, 1992) p. 287, and references therein.Google Scholar
17. Xu, Y., Zhao, B., and Yan, X., J. Appl. Phys. 79, 6137 (1996); Y. Xu, and X. Yan, J. Mater. Res. (1996).Google Scholar
18. Breuers, F., Granovsky, A., Sarychev, A. K., Abstract book of 4th Int'l Conf. on Elee. Trans, and Opti. Prop, of Inhomogeneous Media, p88 (1996).Google Scholar
19. Zhao, B., Pakhomov, A. B., and Yan, X., to appear in J. Appl. Phys.Google Scholar
20. Bandyopadhyay, B., Lindenfeld, P., McLean, W.L., and Sin, H.K., Phys. Rev. B 26, 3476 (1982).Google Scholar
21. Lee, P. A. and Ramakrishnan, T.V., Rev. Mod. Phys. 57 (1985) 287.Google Scholar
22. Altshuler, B.L. and Aronov, A.G., in Electron-Electron Interactions in Disordered Systems (North-Holland, Amsterdam, 1985), p. 1.Google Scholar
23. Carl, , Dumpich, G., and Wassermann, E.F., Phys. Rev. B 50, 4802 (1994).Google Scholar
24. Nozieres, P. and Lewiner, C., J. de Phys. 34, 901 (1973).Google Scholar
25. Berger, L., Phys. Rev. B 2, 4559 (1970).Google Scholar
26. Xiong, P., Xiao, G., Wang, J. Q., Xiao, J. Q., Jiang, J. S. and Chien, C. L., Phys. Rev. Lett. 69, 3220 (1992);Google Scholar
Wang, Jian-Qing and Xiao, Gang, Phys. Rev. B 51, 5863 (1995).Google Scholar
27. Granovsky, A., Breuers, F., Kalitsov, A., and Chshiev, M., Abstract book of 4th Int'l Conf. on Elee. Trans, and Opti. Prop, of Inhomogeneous Media, p93 (1996).Google Scholar
28. Zheng, S., Phys. Rev. B 51, 3632 (1995).Google Scholar
29. Strictly speaking, ρxys in this analysis should be replaced by the extraordinary Hall coefficient, or Re (=ρsys /Ms [11]). Ignoring the small change in Ms can be justified for different samples at 5 K when ρxys changes 104 fold.Google Scholar