Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T03:32:19.187Z Has data issue: false hasContentIssue false

Germanium Loaded Zeolite Y: Preparation and Characterization

Published online by Cambridge University Press:  25 February 2011

S. Tomiya
Affiliation:
Materials DepartmentUniversity of California, Santa Barbara, CA 93106 On leave from Sony Corporation Research Center, Yokohama 240, Japan
P.M. Petroff
Affiliation:
Materials DepartmentUniversity of California, Santa Barbara, CA 93106
D. Margolese
Affiliation:
Department of ChemistryUniversity of California, Santa Barbara, CA 93106
V. I. Srdanov
Affiliation:
Department of ChemistryUniversity of California, Santa Barbara, CA 93106
G. D. Stucky
Affiliation:
Department of ChemistryUniversity of California, Santa Barbara, CA 93106
Y. H. Zhang
Affiliation:
QUEST NSF Science and Technology Center, University of California, Santa Barbara, CA 93106
Get access

Abstract

The cavities of molecular sieves offer an opportunity for synthesis of periodically ordered semiconductor nanoclusters. Ge clusters were synthesized in zeolite Y by thermal decomposition of GeH4 absorbed in the zeolite cages. Upon inclusion of germanium in proton exchanged zeolite Y (HY), the X-ray diffraction (XRD) pattern shows a small change in line positions and considerable change in intensities. No extra reflections were detected in either XRD or transmission electron diffraction (TED) for the samples synthesized at 300°C. These observations are in accordance with the energy dispersive X-ray (EDX) spectroscopy data which reveal the presence of germanium within the HY in concentrations higher than 5x1019 cm-3. At annealing temperatures higher than 500°C, small Ge crystallites (∼0.2μm) form on the exterior surface of the HY, as documented by TED, TEM and absorption spectroscopy. The results from the absorption and photoluminescence spectroscopy of the Ge loaded HY will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982); M. Matsuura and T. Kamizato, Surface Science 174, 183, (1986).Google Scholar
[2] Broers, A. N., in Nanostructure Physics and Fabrication, edited by Read, M. A. and Kirk, W. P. (Academic Press, Inc., New York, 1989), p. 421.Google Scholar
[3] Miller, M. S., Weman, H., Pryor, C. E., Krishnamurthy, M., Petroff, P. M., Kroemer, H. and Merz, J. L., Phys. Rev. Lett. 68, 3464, (1992).Google Scholar
[4] Steigerwald, M. L., Brus, L. E., Acc. Chem. Res. 23, 1 (1990); A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L.E.Brus, J. Chem. Phys. 89, 4001 (1988); L. E. Brus, J. Phys. Chem. 90, 2555 (1986).; L.E. Brus, J. Phys. Chem. 90, 2555 (1986).Google Scholar
[5] Ekimov, A. I., Efros, AL.L. and Onushchenko, A.A., Solid State Commun. 56, 921, (1985).Google Scholar
[6] Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990); V. Lehman and U. Gbsele, Appl. Phys. Lett. 58, 856, (1991).Google Scholar
[7] Sanders, G. D. and Chang, Yia-Chung, Phys. Rev. B 45, 9202, (1992).Google Scholar
[8] Stucky, G. D. and Dougall, J. E. Mac, Science 247, 669, (1990).; G. A. Ozin, S. Kirkby, M. Meszaros, S. Ozkar, A. Stein, G. D. Stucky in Materials for Nonlinear Optics, edited S. R. Marder, J. E. Sohn, G. D. Stucky (A.C.S. Symposium Series, 455, A.C.S., Washington, 1991), p5 5 4 -5 8 1; N. Heron, Y. Wang, M.E. Eddy, G.D. Stucky, D.E. Cox, K. Moller and T. Bien, J. Am.Chem. Soc. 111, 530 (1989); Yu.A. Alekseev, V.N.Bogomolov, T.B. Zhukova, V.P. Petranovskii, S.G. Romanov and S.V. Kholodkevich, lzvestiya Akademii Nauk SSSR 50, 418 (1986)Google Scholar
[9] Nozue, Y., Tang, Z. K. and Goto, T., Solid State Commun. 76, 531 (1990)Google Scholar
[10] Herron, N., Wang, Y., Eddy, M. M., Stucky, G. D., Cox, D. E., Moller, K., and Bein, T., J. Am. Chem. Soc. 111, 530, (1989).Google Scholar
[11] Union Carbide Technical Bulltein F-09A, “Ion Exchange and Metal Loading Procedures”.Google Scholar
[12] Czjzek, M., Jobic, H., Fitch, A. N. and Vogt, T., J. Phys. Chem. 96, 1535, (1992).Google Scholar
[13] Ward, J. A., J. Catal. 9, 396, (1967).Google Scholar
[14] Vansant, E.F., Pore Size Engineering in Zeolite, (John Wiley & Sons, 1990) p. 11.Google Scholar
[15] Dash, W. C. and Newman, R., Phys. Rev. 99, 1151, (1955).Google Scholar
[16] Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y. and Masumoto, Y., Appl. Phys. Lett. 59, 3168, (1991).Google Scholar
[17] Kanemitsu, Y., Uto, H., Masumoto, Y. and Maeda, Y., Appl. Phys. Lett. 61, 2187 (1992)Google Scholar