Published online by Cambridge University Press: 15 February 2011
During grain growth, shrinking columnar grains in thin-film polycrystalline microstructures eventually reach sizes comparable to the film thickness. Due to surface drag, the sides of such grains may bow inward rather than remaining fiat through the bulk of the film. The grain boundaries delimiting such small shrinking grains may become unstable long before the surface of the shrinking grain reaches zero area. We report simulation results demonstrating such an instability in the limit of infinite surface drag. This may lead to extremely rapid disappearance of 4- or 5- sided grains, such as have been recently observed in in situ hot-stage TEM experiments on aluminum thin film polycrystals.