Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:59:55.472Z Has data issue: false hasContentIssue false

Generation and Formation of Gold Nanoparticles with Spatial Control by Two-Photon Femtosecond Laser Interference

Published online by Cambridge University Press:  15 February 2011

Xuan-Ming Duan
Affiliation:
CREST, JST (Japan Science and Technology Corporation)
Hong-Bo Sun
Affiliation:
PRESTO, JST (Japan Science and Technology Corporation) Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Koshiro Kaneko
Affiliation:
Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Satoshi Kawata
Affiliation:
CREST, JST (Japan Science and Technology Corporation) Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Get access

Abstract

A simple strategy for generating and distributing metallic nanoparticles in polymer matrix with a spatial control in micrometer/nanometer scale has been proposed and successfully demonstrated by combination of two-photon photoreduction and femtosecond laser interference technique. The simultaneous spatially controlling generation and organization of metallic nanopartciles were controllable by designing interference patterns and varying laser intensity and exposure time. This strategy provides a simple and rapid approach for creating templates with designed spatial distribution of the nanoparticles, which is favorable for current microelectronics technology. This method also can be utilized in developing mass production processes for future nanodevices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Shipway, A. N.; Katz, E; Willner, I. ChemPhysChem, 2000, 1, 18 and references in here.Google Scholar
2. Dick, K.; Dhanasekaran, T.; Zhang, Z.; Meisel, D. J. Am. Chem. Soc., 2002, 124, 2312.Google Scholar
3.(a) Himmelhaus, M; Takei, H Sensor & Actuat. B, 2000, 63, 24. (b) Reed, M. A.; Zhou, C.; Muller, C. J. Burgin, T. P.; Tour, J. M. Science, 1997, 278, 252.Google Scholar
4. Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J.; Osifchin, R. G. Science, 1996, 273, 1690.Google Scholar
5. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science, 1996, 272, 1924.Google Scholar
6. Chumanov, G.; Sokolov, K.; Gregory, B. W.; Cotton, T. M. J. Phys. Chem., 1995, 99, 9466.Google Scholar
7. Ravaine, S.; Fanucci, G. E.; Seip, C. T.; Adair, J. H.; Talham, D. R. Langmuir, 1998, 14, 708.Google Scholar
8. Kawata, S.; Sun, H.-B.; Tanaka, T.; Takada, K. Nature, 2001, 412, 697.Google Scholar
9. Wenseleers, W.; Stellacci, F.; Meyer-Friedrichsen, T.; Mangel, T.; Bauer, C. A.; Pond, S. J. K. P.; Marder, S. R.; Perry, J. W. J. Phys. Chem. B, 2002, 106, 6853.Google Scholar
10. Link, S.; El-Sayed, M. A. J. Phys. Chem. B, 1999, 103, 4212.Google Scholar