Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:48:43.426Z Has data issue: false hasContentIssue false

Generalized Kubas Complexes as a Novel Means for Room Temperature Molecular Hydrogen Storage

Published online by Cambridge University Press:  01 February 2011

Yong-Hyun Kim
Affiliation:
National Renewable Energy Laboratory Golden, CO 80401, U.S.A.
Yufeng Zhao
Affiliation:
National Renewable Energy Laboratory Golden, CO 80401, U.S.A.
M. J. Heben
Affiliation:
National Renewable Energy Laboratory Golden, CO 80401, U.S.A.
S. B. Zhang
Affiliation:
National Renewable Energy Laboratory Golden, CO 80401, U.S.A.
Get access

Abstract

We propose that generalized Kubas complexes of molecular hydrogen with light metal elements, such as B and Be embedded in carbon nanostructures, or related Be and B materials, could offer breakthrough performance in room temperature hydrogen storage. First-principles local-density functional calculations show that hydrogen bound to these materials are intact, in similarity to physisorbed H2, but with a greatly enhanced adsorption energy in the range of 0.2–0.7 eV. The metal-H2 binding is attributed to the Coulombic interaction between holes created at the metal sites and Σ electrons of the H2. Management of the hole density and electron-hole orbital overlap thus enables us to control the binding strength of H2 for optimal storage properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERECES

1. Kubas, G.J., J. Organomet. Chem. 635, 37 (2001).Google Scholar
2. Le-Huseboand, T. and Jensen, C. M., Inorg. Chem. 32, 3797 (1993).Google Scholar
3. Arellano, J. S., Molina, L. M., Rubio, A., and Alonso, J. A., J. Chem. Phys. 112, 8114 (2000).Google Scholar
4. Okamoto, Y. and Miyamoto, Y., J. Phys. Chem. B 105, 3470 (2001).Google Scholar
5. Chan, S.-P., Chen, G., Gong, X. G., and Liu, Z.-F., Phys. Rev. Lett. 87, 205502 (2001).Google Scholar
6. Lee, S. M. and Lee, Y. H., Appl. Phys. Lett. 76, 2877 (2000).Google Scholar
7. Li, J., Furuta, T., Goto, H., Ohashi, T., Fujiwara, Y., and Yip, S., J. Chem. Phys. 119, 2376 (2003).Google Scholar
8. Kim, Y.-H., Zhao, Y., Zhang, S. B., Annual American Physical Society March Meeting 2004 Bulletin S39.5 (Montreal, Canada).Google Scholar
9. Kim, Y.-H., Zhao, Y., Willianson, A., Heben, M. J., and Zhang, S. B., to be published.Google Scholar
10. Kim, Y.-H., Zhao, Y., Heben, M. J., and Zhang, S. B., to be published.Google Scholar
11. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
13. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature (London) 410, 63 (2001).Google Scholar
14. An, J. M. and Pickett, W. E., Phys. Rev. Lett. 86, 4366 (2001).Google Scholar
15. Kouvetakis, J., Kaner, R. B., Sattler, M. L., and Bartlett, N., J. Chem. Soc. Chem. Commun. 1758 (1986).Google Scholar
16. Way, B. M., Dahn, J. R., Tiedje, T., Myrtle, K., and Kasrai, M., Phys. Rev. B 46, 1697 (1992).Google Scholar
17. Guo, T., Jin, C., and Smalley, R. E., J. Phys. Chem. 95, 4948 (1991).Google Scholar
18. Xie, R.-H., Bryant, G. W., Zhao, J., Smith, V. H. Jr, Di Carlo, A., and Pecchia, A., Phys. Rev. Lett. 90, 206602 (2003).Google Scholar
19. Zhang, P. and Crespi, V. H., Phys. Rev. Lett. 89, 056403 (2002).Google Scholar