Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:23:41.863Z Has data issue: false hasContentIssue false

Gas-Phase Silicon Atom Densities in the Chemical Vapor Deposition of Silicon from Silane

Published online by Cambridge University Press:  22 February 2011

Michael E. Coltrin
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87175
William G. Breiland
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87175
Pauline Ho
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87175
Get access

Abstract

Silicon atom number density profiles have been measured using laser-induced fluorescence during the chemical vapor deposition of silicon from silane. Measurements were obtained in a rotating-disk reactor as a function of silane partial pressure and the amount of hydrogen added to the carrier gas. Absolute number densities were obtained using an atomic absorption technique. Results were compared with calculated density profiles from a model of the coupled fluid flow, gas-phase and surface chemistry for an infinite-radius rotating disk. An analysis of the reaction mechanism showed that the unimolecular decomposition of SiH2 is not the dominant source of Si atoms. Profile shapes and positions, and all experimental trends are well matched by the calculations. However, the calculated number density is up to 100 times smaller than measured.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc., 131, 425 (1984).CrossRefGoogle Scholar
2. Breiland, W. G., Coltrin, M. E., and Ho, P., J. Appl. Phys. 59, 3267 (1986).CrossRefGoogle Scholar
3. Breiland, W. G., Ho, P., and Coltrin, M. E., J. AppI. Phys. 60, 1505 (1986).Google Scholar
4. Breiland, W. G. and Evans, G., J. Electrochem. Soc. 138, 1806 (1991).Google Scholar
5. Coltrin, M. E., Kee, R. J., and Evans, G., J. Electrochem. Soc., 136, 819 (1989).Google Scholar
6. Coltrin, M. E., Kee, R. J., Evans, G. H., Meeks, E., Rupley, F. M., and Grcar, J. F., Sandia National Laboratories Report, SAND91-8003, 1991.Google Scholar
7. Ho, P., Coltrin, M. E., and Breiland, W. G. (in preparation).Google Scholar
8. Gilbert, R. G., Luther, K., and Troe, J., Ber. Bunsenges. Phys. Chem., 87, 161 (1983).Google Scholar
9. Gardiner, W. C. and Troe, J., in Combustion Chemistry, edited by Gardiner, W. C. (Springer, Berlin, 1984).Google Scholar
10. Moffat, H. K., Jensen, K. F., and Carr, R. W., J. Phys. Chem., 94, 145 (1991).Google Scholar
11. Moffat, H. K., Jensen, K. F., and Carr, R. W., J. Phys. Chem., 96, 7695 (1992).CrossRefGoogle Scholar
12. Moffat, H. K., Jensen, K. F., and Carr, R. W., J. Phys. Chem., 96, 7683 (1992).Google Scholar
13. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc., 133, 1206 (1986).Google Scholar
14. Houf, W. G., Grcar, J. F., and Breiland, W. G., Mat. Sci. and Eng., B17, 163 (1993).Google Scholar
15. Sinniah, K., Sherman, M. G., Lewis, L. B., Weinberg, W. H., Yates, J. T. Jr., and Janda, K. C., J. Chem. Phys., 92, 5700 (1990).Google Scholar