Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:45:36.987Z Has data issue: false hasContentIssue false

Gas Phase Nanoparticle Integration

Published online by Cambridge University Press:  17 March 2011

Chad R Barry
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN, 55455
Uwe Kortshagen
Affiliation:
Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN, 55455
Heiko O Jacobs
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN, 55455
Get access

Abstract

We report on two gas phase nanoparticle integration processes to assemble nanomaterials onto desired areas on a substrate. We expect these processes to work with any material that can be charged. The processes offer self-aligned integration and could be applied to any nanomaterial device requiring site specific assembly. The Coulomb force process directs the assembly of nanoparticles onto charged surface areas with sub-100 nm resolution. The charging is accomplished using flexible nanostructured electrodes. Gas phase assembly systems are used to direct and monitor the assembly of nanoparticles onto the charge patterns with a lateral resolution of 50 nm. The second concept makes use of fringing fields. The fringing fields directed the assembly of nanoparticles into openings. The fringing fields can be confined to sub 50 nm sized areas and exceed 1 MV/m, acting as nanolenses. Gas phase assembly systems have been used to deposit silicon, germanium, metallic, and organic nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jacobs, H. O., Campbell, S. A., Steward, M. G., Advanced Materials 2002, 14, 1553.Google Scholar
[2] Barry, C. R., Steward, M. G., Lwin, N. Z., Jacobs, H. O., Nanotechnology 2003, 14, 1057.Google Scholar
[3] Cui, Y., Bjoerk, M. T., Liddle, J. A., Soennichsen, C., Boussert, B., Alivisatos, A. P., Nano Letters 2004, 4, 1093.Google Scholar
[4] Ma, L.-C., Subramanian, R., Huang, H.-W., Ray, V., Kim, C.-U., Koh, S. J., Nano Letters 2007, 7, 439.Google Scholar
[5] Wright, W. M. D., Chetwynd, D. G., Nanotechnology 1998, 9, 133.Google Scholar
[6] Niemeyer, C. M., Ceyhan, B., Gao, S., Chi, L., Peschel, S., Simon, U., Colloid & Polymer Science 2001, 279, 68.Google Scholar
[7] Rao, S. G., Huang, L., Setyawan, W., Hong, S., Nature (London, United Kingdom) 2003, 425, 36.Google Scholar
[8] Yellen, B. B., Friedman, G., Advanced Materials 2004, 16, 111.Google Scholar
[9] Jacobs, H. O., Whitesides, G. M., Science 2001, 291, 1763.Google Scholar
[10] Barry, C. R., Lwin, N. Z., Zheng, W., Jacobs, H. O., Appl. Phys. Lett. 2003, 83, 5527.Google Scholar
[11] Mesquida, P., Stemmer, A., Advanced Materials (Weinheim, Germany) 2001, 13, 1395.Google Scholar
[12] Naujoks, N., Stemmer, A., Microelectronic Engineering 2005, 78–79, 331.Google Scholar
[13] Krinke, T. J., Fissan, H., Deppert, K., Magnusson, M. H., Samuelson, L., Applied Physics Letters 2001, 78, 3708.Google Scholar
[14] Barry, C. R., Gu, J., Jacobs, H. O., Nano Letters 2005, 5, 2078.Google Scholar
[15] Barry, C. R., Jacobs, H. O., Nano Letters 2006, 6, 2790.Google Scholar
[16] Fudouzi, H., Kobayashi, M., Shinya, N., Journal of Nanoparticle Research 2001, 3, 193.Google Scholar
[17] Welle, A. M., Jacobs, H. O., Applied Physics Letters 2005, 87, 263119.Google Scholar
[18] Xia, Y., Rogers, J. A., Paul, K. E., Whitesides, G. M., Chemical Reviews (Washington, D. C.) 1999, 99, 1823.Google Scholar