No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
We report on two gas phase nanoparticle integration processes to assemble nanomaterials onto desired areas on a substrate. We expect these processes to work with any material that can be charged. The processes offer self-aligned integration and could be applied to any nanomaterial device requiring site specific assembly. The Coulomb force process directs the assembly of nanoparticles onto charged surface areas with sub-100 nm resolution. The charging is accomplished using flexible nanostructured electrodes. Gas phase assembly systems are used to direct and monitor the assembly of nanoparticles onto the charge patterns with a lateral resolution of 50 nm. The second concept makes use of fringing fields. The fringing fields directed the assembly of nanoparticles into openings. The fringing fields can be confined to sub 50 nm sized areas and exceed 1 MV/m, acting as nanolenses. Gas phase assembly systems have been used to deposit silicon, germanium, metallic, and organic nanoparticles.