Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:22:22.086Z Has data issue: false hasContentIssue false

Gas Phase Electrodeposition: A Programmable Localized Deposition Method for Rapid Combinatorial Investigation of Nanostuctured Devices and 3D Bulk Heterojunction Photovoltaic Cells

Published online by Cambridge University Press:  10 May 2012

En-Chiang Lin
Affiliation:
Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Jun Fang
Affiliation:
Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Heiko O. Jacobs
Affiliation:
Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

This article applies a recently discovered gas phase nanocluster electrodeposition process to the formation and combinatorial improvement of 3D bulk heterojunction photovoltaic cells. The gas phase deposition process used here is a single reactor system that forms charged nanoclusters (gold, silver, tungsten, and platinum) at atmospheric pressure. The clusters deposit onto selected surface areas with sub 100 nm lateral resolution using a programmable concept similar to liquid phase electrodeposition such that biased electrodes turn ON or OFF deposition in selected areas. Continued deposition of the nanoparticles results in a tower array with different lengths and density on a single substrate which is used as contacts to the active organic layer of 3D bulk heterojunction photovoltaic cells. Applying a combinatorial approach identifies in a massively parallel way electrode designs and topologies that improve light scattering, absorption, and minority carrier extraction. We report photovoltaic cells with higher and denser nanocluster tower arrays that improve the power conversion efficiency of bulk heterojunction photovoltaic cells by approximately 47.7%.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Taton, T., Mirkin, C., Letsinger, R., Science, 289 (2000) 17571760.CrossRefGoogle Scholar
Jacobs, H., Campbell, S., Steward, M., Advanced Materials, 14 (2002) 15531557.3.0.CO;2-9>CrossRefGoogle Scholar
Liu, W., Journal of bioscience and bioengineering, 102 (2006) 17.CrossRefGoogle Scholar
Pavesi, L., Negro, L., Mazzoleni, C., Franzo, G., Priolo, F., Nature, 408 (2000) 440444.CrossRefGoogle Scholar
McDonald, S., Konstantatos, G., Zhang, S., Cyr, P., Klem, E., Levina, L., Sargent, E., Nature Materials, 4 (2005) 138142.CrossRefGoogle Scholar
Pan, Z., Dai, Z., Wang, Z., Science, 291 (2001) 19471949.CrossRefGoogle Scholar
Feldman, Y., Wasserman, E., Srolovitz, D., Tenne, R., Science, 267 (1995) 222225.CrossRefGoogle Scholar
Huang, M., Wu, Y., Feick, H., Tran, N., Weber, E., Yang, P., Advanced Materials, 13 (2001) 113116.3.0.CO;2-H>CrossRefGoogle Scholar
Morales, A., Lieber, C., Science, 279 (1998) 208211.CrossRefGoogle Scholar
Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A., Hartnagel, H., Science, 285 (1999) 15511553.CrossRefGoogle Scholar
Iijima, S., Nature, 354 (1991) 5658.CrossRefGoogle Scholar
Schwyn, S., Garwin, E., Schmidt-Ott, A., Journal of Aerosol Science, 19 (1988) 639642.CrossRefGoogle Scholar
Camata, R., Atwater, H., Vahala, K., Flagan, R., Applied Physics Letters, 68 (1996) 31623164.CrossRefGoogle Scholar
Zonnevylle, A., Hagen, C., Kruit, P., Schmidt-Ott, A., Microelectronic Engineering, 86 (2009) 803805.CrossRefGoogle Scholar
Cole, J., Lin, E., Barry, C., Jacobs, H., Applied Physics Letters, 95 (2009) 113101.CrossRefGoogle Scholar
Aleksandrov, N., Bazelyan, E., Journal of Physics D: Applied Physics, 29 (1996) 740752.CrossRefGoogle Scholar
Aleksandrov, N., Bazelyan, E., Plasma Sources Science and Technology, 8 (1999) 285294.CrossRefGoogle Scholar
Rodrfguez, A., Morgan, W., Touryan, K., Moeny, W., Martin, T., Journal of Applied Physics, 70 (1991) 20152022.CrossRefGoogle Scholar
Shen, Y., Jacobs, D.B., Malliaras, G.G., Koley, G., Spencer, M.G., Ioannidis, A., Advanced Materials, 13 (2001) 12341238.3.0.CO;2-R>CrossRefGoogle Scholar
Roman, L., Inganas, O., Granlund, T., Nyberg, T., Svensson, M., Andersson, M., Hummelen, J., Advanced Materials, 12 (2000) 189195.3.0.CO;2-2>CrossRefGoogle Scholar
Na, S., Kim, S., Kwon, S., Jo, J., Kim, J., Lee, T., Kim, D., Applied Physics Letters, 91 (2007) 173509.CrossRefGoogle Scholar
Kayes, B., Atwater, H., Lewis, N., Journal of Applied Physics, 97 (2005) 114302.CrossRefGoogle Scholar