Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:04:55.407Z Has data issue: false hasContentIssue false

GaN/AlxGa1−xN Wurtzite Semiconductor Superlattices

Published online by Cambridge University Press:  25 February 2011

Shang Yuan Ren
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287–1504, U.S.A. Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of, China
John D. Dow
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287–1504, U.S.A.
Get access

Abstract

A theory of electronic structures of NGaN×NAlGaN GaN/Alx Ga1−xN wurtzite semiconductor superlattices (grown in the direction of the c-axis) is developed and used to predict the superlattices' band structures, energy gaps, and the “deep” energy levels of substitutional s- and p-bonded defects in them. In addition, the valence band offset of GaN with respect to AlN, the one adjustable parameter of the theory, is determined to be about 0.4 times the total fundamental band-gap difference, by fitting the optical data for the superlattices' fundamental band gaps as a function of the layer thicknesses NGaN and NAlN, with the valence band edge of AlN being at lower energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tansley, T. L. and Foley, C. P., in Proc. 3rd. Inter. Conf. on Semi-Insulating III-V Materials, Warm Springs, Oregon, 1984, Ed. by Blakemore, J. (Shiva, London) pp. 497500.Google Scholar
[2] See also Foley, C. P. and Tansley, T. L., Appl. Surf. Lett. 22, 663 (1985).Google Scholar
[3] Tansley, T. L. and Foley, C. P., J. Appl. Phys. 60, 2092 (1986).Google Scholar
[4] Foley, C. P. and Tansley, T. L., Phys. Rev. B 33, 1430 (1986).Google Scholar
[5] Tansley, T. L. and Egan, R. J., Phys. Rev. B 45, 10942 (1992).Google Scholar
[6] Jenkins, D. W. and Dow, J. D., Phys. Rev. B 39, 3317 (1989).Google Scholar
[7] Sitar, Z., Paisley, M. J., Yan, B., Davis, R. F., Ruan, J., and Choyke, J. W., Thin Solid Films, 200, 311 (1991).Google Scholar
[8] Itoh, K., Kawamoto, T., Amano, H., Hiramatsu, K., and Akasaki, I., Jpn. Appl. Phys., 30, 1924 (1991).Google Scholar
[9] Luttinger, J. M. and Kohn, W., Phys. Rev. 97, 969 (1955).Google Scholar
[10] Chelikowsky, J. R. and Cohen, M. L., Phys. Rev. B 10, 5095 (1974); B 14, 556 (1976).Google Scholar
[11] Vogl, P., Hjalmarson, H. P., and Dow, J. D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
[12] Wang, C. S., Norman, M. R., Pickett, W. E., and Krakauer, H., Bull. Amer. Phys. Soc. 32, 820 (1987);Google Scholar
Hybertsen, M. S. and Louie, S. G., Phys. Rev. B 34, 5390 (1986); Phys. Rev. Lett. 55, 1418 (1985).Google Scholar
[13] Ren, S. Y. and Dow, J. D., J. Appl. Phys. 65, 1987 (1989);Google Scholar
Dow, J. D., Ren, S. Y., Shen, J., Hong, R.-D., and Wang, R.-P., J. Electron. Mater. 19, 829 (1990);Google Scholar
Dow, J. D., Ren, S. Y., Shen, J., and Tsai, M.-H., Mater. Res. Soc. Symp. Proc. Vol. 163, 349 (1990);Google Scholar
Shen, J., Ren, S. Y., and Dow, J. D., Phys. Rev. B 46, 6938 (1992);Google Scholar
Hong, R.-D., Jenkins, D. W., Ren, S. Y., and Dow, J. D., Materials Research Soc. Symp. Proc. 77, 545 (1987), Interfaces, Superlattices, and Thin Films, ed. Dow, J. D. and Schuller, I. K..Google Scholar
[14] Ren, S. Y., Dow, J. D., and Shen, J. Phys. Rev. B 38, 10677 (1988).Google Scholar
[15] Ren, S. Y. and Dow, J. D., Phys. Rev. B 38, 7796 (1989).Google Scholar
[16] Hjalmarson, H. P., Vogl, P., Wolford, D. J., and Dow, J. D., Phys. Rev. Letters 44, 810 (1980).Google Scholar
[17] Ren, S. Y., Hu, W.-M., Sankey, O. F., and Dow, J. D., Phys. Rev. B 26, 951 (1982).Google Scholar
[18] Dow, J. D., Shen, J., and Ren, S. Y., Core excitons in strained-layer superlattices, “Progress in Electronic Properties of Solids,” Physics and Chemistry of Materials with Low-dimensional Structure, Festschrift in honor of Professor Franco Bassani, ed. by Doni, E., Girlanda, R., Pastori Parravicini, G., and Quattropani, A., (Kluwer, Dordrecht, 1989), pp. 439449.Google Scholar
[19] See, for example, Dow, J. D., Localized perturbations in semiconductors. In Highlights of Condensed-Matter Theory (Proceedings of the International School of Physics “Enrico Fermi”, Course 89, Varenna, 1983), ed. by Bassani, F., Fumi, F., and Tosi, M. P. (Societa Italiana di Fisica, Bologna, Italy, and North Holland, Amsterdam, 1985), pp. 465494.Google Scholar
[20] Ren, S. Y. and Dow, J. D., J. Appl. Phys. 65, 1987 (1989).Google Scholar
[21] Kobayashi, A., Sankey, O. F., Volz, S. M., and Dow, J. D., Phys. Rev. B 28, 935 (1983).Google Scholar
[22] Kobayashi, A., Sankey, O. F., and Dow, J. D., Phys. Rev. B 28, 946 (1983).Google Scholar
[23] Jenkins, D. W. and Dow, J. D., Phys. Rev. B 39, 3317 (1989).Google Scholar
[24] Jenkins, D. W., Dow, J. D., and Tsai, M.-H., J. Appl. Phys. 72, 4130 (1992).Google Scholar
[25] Tsai, M.-H., Jenkins, D. W., Dow, J. D., and Kasowski, R. V., Phys. Rev. B 38, 1541 (1988).Google Scholar
[26] Jenkins, D. W., Hong, R.-D., and Dow, J. D., Superlatt. Microstruct. 3, 365 (1987).Google Scholar
[27] Jenkins, D. W. and Dow, J. D., Phys. Rev. B 39, 3317 (1989).Google Scholar
[28] Chadi, D. J. and Cohen, M. L., Phys. Rev. B 8, 5747 (1973).Google Scholar
[29] Ren, S. Y., Dow, J. D. and Shen, J., Phys. Rev. B 38, 10677 (1988).Google Scholar
[30] Landolt-Börnstein, , Numerical Data and Functional Relationships in Science and Technology, New Series, Vol.17b, Semiconductors: Physics of II-VI and I-VII Compounds, ed. by Madelung, O., Schulz, M., and Weiss, H. (Springer-Verlag, Berlin, 1982).Google Scholar