Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:26:51.720Z Has data issue: false hasContentIssue false

GaN And Related Materials For High Power Applications

Published online by Cambridge University Press:  10 February 2011

M. S. Shur*
Affiliation:
Electrical, Computer, and Systems Engineering and Center for Integrated Electronics and Electronics Manufacturing Rensselaer Polytechnic Institute, Troy, NY 12180–[email protected]
Get access

Abstract

Unique properties of GaN and related semiconductors make them superior for high-power applications. The maximum density of the two-dimensional electron gas at the GaN/AlGaN heterointerface or in GaN/AlGaN quantum well structures can reach 5×1013 cm−2, which is more than an order of magnitude higher than for traditional GaAs/AlGaAs heterostructures. The mobility-sheet carrier concentration product for these two dimensional systems might also exceed that for GaAs/AIGaAs heterostructures and can be further enhanced by doping the conducting channels and by using “piezoelectric” doping, which takes advantage of high piezoelectric constants of GaN and related materials. We estimate that current densities over 20 A/mm can be reached in GaN-based High Electron Mobility Transistors (HEMTs). These high current values can be combined with very high breakdown voltages in high-power HEMTs. These breakdown voltages are expected to reach several thousand volts. Recent Monte Carlo simulations point to strong ballistic and overshoot effects in GaN and related materials, which should be even more pronounced than in GaAs-based compounds but at much higher electric fields. This should allow us to achieve faster switching, minimizing the power dissipation during switching events. Selfheating, which is unavoidable in power devices, raises operating temperatures of power devices well above the ambient temperature. For GaN-based devices, the use of SiC substrates having high thermal conductivity is essential for ensuring an effective heat dissipation. Such an approach combines the best features of both GaN and SiC technologies; and GaN/SiC-based semiconductors and heterostructures should find numerous applications in power electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bhatnagar, M. and Baliga, B. J., IEEE Trans. Electron Devices, vol.40, p. 645 (1993)Google Scholar
2. Shur, M. and Khan, A., GaN Based Field Effect Transistors, in “High Temperature Electronics”, ed. Willander, M. and Hartnagel, H. L., Chapman and Hall, pp. 297321, London (1996)Google Scholar
3. Binari, S. C., Redwing, J. M., Kelner, G., and Kruppa, W., Electronics Letters, 33, No. 3, pp. 242243 (1997)Google Scholar
4. Gaska, R., Chen, Q., Yang, J., Osinsky, A., Khan, M. Asif, and Shur, Michael S., IEEE Electron Device Letters, vol.18, No. 10, pp. 492494, October (1997)Google Scholar
5. Gaska, R., Shur, M. S., Yang, J., and Fjeldly, T. A., Double Channel AlGaN/GaN Heterostructure Field Effect Transistors, MRS, Symposium D, Spring, accepted (1998)Google Scholar
6. Khan, M. Asif, Chen, Q., and Sun, C. J., Shur, M. S., and Gelmont, B. L., Appl. Phys. Lett., vol.67, No. 10, Sep. 4, pp. 14291431 (1995)Google Scholar
7. Gaska, R., Shur, M. S., Yang, J. W., Osinsky, A., Orlov, A. O., Snider, G. L., Substrate Bias Effects in AIGaN/GaN Doped Channel Heterostructure Field Effect Transistors Grown on Doped SiC Substrates, to be published in Proceedings of the International Conference on SiC and Related Compounds (1997)Google Scholar
8. Rode, D. L. and Gaskill, D. K., Appl. Phys. Lett., 66, 1972 (1995)10.1063/1.113294Google Scholar
9. Kim, J. G., Frenkel, A. C., Liu, H., and Park, R. M., Appl. Phys. Lett., 65, 91 (1994)10.1063/1.113085Google Scholar
10. Shur, M. S., Gelmont, B., and Khan, M. Asif, J. Electronic Materials, vol.25, No. 5, pp. 777785 May (1996)Google Scholar
11. Bhapkar, U. V. and Shur, M. S., J. Appl. Phys., 82 (4), pp. 16491655, August 15 (1997)Google Scholar
12. Xu, J. and Shur, M. S., IEEE Trans. Electron Devices, vol. ED–34, No. 8, pp. 18311832, Aug. (1987)Google Scholar
13. Foutz, B. E., Eastman, L. F., Bhapkar, U. V., Shur, M. S., Appl. Phys. Lett., 70, No 21, pp. 28492851 (1997)Google Scholar
14. Foutz, B. E., Eastman, L. F., O'Leary, S. K., Shur, M. S., and Bhapkar, U. V., Velocity overshoot and ballistic transport in indium nitride, in Symposium Proceedings of Material Research Society, this volume (1998)Google Scholar
15. O'Leary, S. K., Shur, M. S., Foutz, B. E., Eastman, L. F., and Bhapkar, U. V., Velocity field characteristics of indium nitride, in Symposium Proceedings of Material Research Society, this volume (1998)Google Scholar
16. Knap, W., Contreras, S., Alause, H., Skiberbiszewski, C., Camassel, J., Dyakonov, M., Robert, J. L., Yang, J., Chen, Q., Khan, M. Asif, Sadowski, M., Huant, S., Yang, F. J., Goiran, M., Leotin, J., and Shur, M., Appl. Phys. Lett., 70 (16), pp. 21232125, April (1997)Google Scholar
17. Stem, F., and Sarma, S., Phys. Rev., B–30, No. 2, pp. 840848 (1984)Google Scholar
18. Bykhovski, A. D., Gelmont, B., and Shur, M. S., J. Appl. Phys. Dec., vol.74 (11), p. 6734 (1993)Google Scholar
19. Bykhovski, A. D., Gelmont, B., and Shur, M. S., Appl. Phys. Lett., vol.63, p. 2243 (1993)Google Scholar
20. Bykhovski, A. D., Gelmont, B., and Shur, M. S., J. Appl. Phys., 78 (6), pp. 36913696, 15 September (1995)Google Scholar
21. Bykhovski, A. D., Gelmont, B., Shur, M. S., and Khan, A., J. Appl. Phys., vol.77(4), pp.16161620 (1995)Google Scholar
22. Bykhovski, A. D., Kaminskii, V. V., Shur, M. S., Chen, Q. C., and Khan, M. Asif, Appl. Phys. Lett., 68 (6), pp. 818819 (1996)10.1063/1.116543Google Scholar
23. Bykhovski, A. D., Kaminski, V. V., Shur, M. S., Chen, Q. C., Khan, M. A., Applied Physics Letters, November 18, 69(21), p. 3254 (1996)Google Scholar
24. Yu, E. T., Sullivan, G. J., Asbeck, P. M., Wang, C. D., Qiao, D., and Lau, S. S., Appl. Phys. Lett., vol.71, No 19, pp. 27942796 (1997)Google Scholar
25. Gaska, R., Yang, J., Osinsky, A., Bykhovski, A. D., and Michael Shur, S., Piezoeffect and Gate Current in AlGaN/GaN High Electron Mobility Transistors, Appl. Phys. Lett., vol.71, Dec. 22, (1997)Google Scholar
26. Gaska, R., Yang, J., Bykhovski, A. D., Shur, Michael S., Kaminski, V. V., and Soloviov, S. M., Piezoresistive Effect in GaN-AIN-GaN Structures, Appl. Phys. Lett., vol.71, Dec. 29 (1997)10.1063/1.120514Google Scholar
27. Gaska, R., Yang, J., Bykhovski, A. D., Shur, Michael S., Kaminski, V. V., and Soloviov, S. M., The Influence of the Deformation on the Two-Dimensional Electron Gas Density in GaN-AlGaN Heterostructures, Appl. Phys. Lett., vol.72, Jan. (1998)Google Scholar
28. G., Martin, Botchkarev, A., Rockett, A., and Morkoç, H., Appl. Phys. Lett., v. 68, (18) pp. 25412543 (1996)Google Scholar
29. Bykhovski, A. D., Gelmont, B. L., and Shur, M. S., J. Appl. Phys., Vol.81, No. 9, pp. 6332, May (1997)Google Scholar
30. Kolnik, Jan, Oguzman, Ismail H., Brennan, Kevin F., Wang, Rongping and Ruden, P. Paul, J. Appl. Phys. 81 (2), pp. 726733 (1997)Google Scholar
31. Oguzman, Ismail H., Bellotti, E., Brennan, Kevin F., Kolnik, Jan, Wang, Rongping and Ruden, P. Paul, J. Appl. Phys. 81 (12), pp. 7827–7824 (1997)Google Scholar
32. Gaska, R., Chen, Q., Yang, J., Osinsky, A., Khan, M. Asif, and Shur, Michael S., Electronics Letters, 33, No. 14, pp. 12551257, 3 July (1997)Google Scholar
33. Fjeldly, T., Ytterdal, T., and Shur, M. S., Introduction to Device and Circuit Modeling for VLSI, John Wiley and Sons, 1997 Google Scholar
34. Chen, Q., Gaska, R., Khan, M. Asif, Shur, Michael S., Ping, A., Adesida, I., Burm, J., J.Schaff, W., and Eastman, L. F., Electronics Letters, vol.33, No. 7, pp. 637639, March 27 (1997)Google Scholar
35. Shur, M. S., GaAs Devices and Circuits, Plenum, New York (1987)Google Scholar
36. Gaska, R., Osinsky, A., Yang, J., and Shur, Michael S., Self-Heating in High Power AlGaN/GaN HFETs, IEEE Electron Device Letters, vol.19, No. 2, February (1998)Google Scholar
37. Gaska, R., Yang, J., Osinsky, A., Khan, M. Asif, Shur, M. S., Novel High Power AlGaN/GaN HFETs on SiC substrates, IEDM-97 Technical Digest, December (1997)Google Scholar