Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T05:03:25.407Z Has data issue: false hasContentIssue false

Gallium Arsenide Surface Inversion using a Novel Silicon–Silicon Dioxide Insulator Structure

Published online by Cambridge University Press:  26 February 2011

G.G. Fountain
Affiliation:
Research Triangle Institute, Research Triangle Park, NC, 27709
R.A. Rudder
Affiliation:
Research Triangle Institute, Research Triangle Park, NC, 27709
S.V. Hattangady
Affiliation:
Research Triangle Institute, Research Triangle Park, NC, 27709
R.J. Markunas
Affiliation:
Research Triangle Institute, Research Triangle Park, NC, 27709
D.J. Vitkavage
Affiliation:
now at AT&T Laboratories Allentown, PA 18103
Get access

Abstract

A novel GaAs metal insulator semiconductor (MIS) structure in which the surface of the GaAs is unpinned and inverted is reported. The structure utilizes a thinsingle crystalline Si interlayer between the GaAs surface and a SiO2 insulator. The Si and SiO2 are deposited using low temperature remote plasma chemical vapor deposition techniques. Characteristics of the Si layer have been examined using reflecting high energy electron diffraction, Xray photoelectron spectroscopy, and He ion scattering spectroscopy. The complete MIS structure has been characterized using capacitance-voltage data taken at frequencies ranging from near D.C. (quasistatic) to 100 MHz. The structure exhibits deep depletion and inversion behavior. Calculation of the surface potential variation using quasistatic data indicates that the surface potential is varied by 0.83 V with an applied electric field from −1.6 to 3.2 MV- cm−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meiners, L. G., J. Vac Sci. Technol. 15, 1402, (1978)Google Scholar
2. Meiners, L. G., Appl. Phys. Lett. 33, 747, (1978).Google Scholar
3. Vitkavage, D. J., Fountain, G. G., Rudder, R. A., Hattangady, S. V., Markunas, R. J., Appl. Phys. Lett. 53, 692, (1988).Google Scholar
4. Fountain, G. G., Rudder, R. A., Hattangady, S. V., Vitkavage, D. J., Markunas, R. J., Posthill, J. A., Elec. Lett. 24, 1010, (1988).Google Scholar
5. Fountain, G. G., Hattangady, S. V., Vitkavage, D. J., Rudder, R. A., Markunas, R. J., Elec. Lett. Vol.24, Sept. 1, (1988).Google Scholar
6. Fountain, G. G., Rudder, R. A., Hattangady, S. V., Markunas, R. J., Lindorme, P. S., J. Appl. Phys. 63, 4744, (1988).Google Scholar
7. Tiwari, S., Wright, S. L., Batey, J., IEEE Electron Device Lett. Vol. EDL 9, 488, (1988).CrossRefGoogle Scholar
8. Hattangady, S. S. V., Rudder, R. A. and Markunas, R. J., ”In Situ Cleaning of Ge (111) Surfaces Using Hydrogen Dissociated by Ar Metastable Transported From a Remote Plasma Region”, published in proceedings of the Spring 1988 MRS Meeting, Reno, NV, (1988).Google Scholar
9. Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y. and Lindau, I., J. Vac. Sci. Technol. 16, 1422, (1979).CrossRefGoogle Scholar
10. Fountain, G.G., Hattangady, S.V., Rudder, R.A., Markunas, R.J., Lucovsky, G., Kim, S.S., and Tsu, D.V., ”Evidence For The Occurrence Of Subcutaneous Oxidation During Low Temperature Remote Plasma Enhanced Deposition Of Silicon Dioxide Films”, J. Vac. Sci. Technol. A7, (1989).Google Scholar