Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:24:38.219Z Has data issue: false hasContentIssue false

GaAs/Ge Crystal Growth on Si and SiO2/Si Substrates

Published online by Cambridge University Press:  25 February 2011

Yoshiro Ohmachi
Affiliation:
NTT Electrical Communications Laboratories, Musashino–shi, Tokyo 180, Japan
Yukinobu Shinoda
Affiliation:
NTT Electrical Communications Laboratories, Musashino–shi, Tokyo 180, Japan
Satoshi Oku
Affiliation:
NTT Electrical Communications Laboratories, Musashino–shi, Tokyo 180, Japan
Get access

Abstract

An approach to the composite layer growth of GaAs/Ge on Si(100) and insulator–coated Si(100) has been investigated. To overcome a problem of antiphase disorder of GaAs occurring along with epitaxial growth on Ge, thermal etching on Ge surfaces in hydrogen was introduced just prior to the growth. Antiphase–domain–free GaAs grown on a Ge(100) wafer exhibited mirror surfaces, photoluminescence characteristics comparable to those of homoepitaxial layers, and low etch–pit densities. The autodoping of Ge into GaAs induced a highly doped interfacial layer several thousand angstroms thick. The present study also involves heteroepitaxial growth of Ge on Si by vacuum deposition and Ge crystal growth on insulating layers over Si by LESS method.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Geis, M.W., Antoniadis, D.A., Silversmith, D.J., Mountain, R.W. and Smith, H.I., Appl. Phys. Lett. 37, 454 (1980).Google Scholar
2. Gale, R.P., Fan, J.C.C., Tsaur, B-Y., Turner, G.W. and Davis, F.M., IEEE Electron Device Lett., EDL–2, 169 (1981).Google Scholar
3. Choi, H.K., Tsaur, B-Y., Metze, G.M., Turner, G.W. and Fan, J.C.C., IEEE Electron Device Lett., EDL–5, 207 (1984).Google Scholar
4. Uppal, P.N. and Kroemer, H., J. Appl. Phys. 58, 2195 (1985).CrossRefGoogle Scholar
5. Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984).Google Scholar
6. Nishi, S., Inomata, H., Akiyama, M. and Kaminishi, K., Jpn. J. Appl. Phys. 24, L391 (1985).Google Scholar
7. Wang, W.I., Appl. Phys. Lett. 44, 1149 (1984).Google Scholar
8. Fischer, R., Henderson, T.H., Klein, J., Masselink, W.T., Kopp, W. and Morkoc, H., Electron. Lett. 20, 945 (1984).Google Scholar
9. Fletcher, R.M., Wagner, D.K. and Ballantyne, J.M., in Thin Films and Interfaces II, edited by Baglin, J.E.E., Campbell, D.R. and Chin, W.K. (Elsevier Science Publishers, New York, 1984) pp.417422.Google Scholar
10. Tamura, M. and Tamura, H. and Tokuyama, T., Japan. J. Appl. Phys. 19, L23 (1980).Google Scholar
11. Fan, J.C.C., Geis, M.W. and B-Tsaur, Y., Appl. Phys. Lett. 38, 365 (1981).Google Scholar
12. Shinoda, Y. and Ohmachi, Y., in Layered Structures and Epitaxy, edited by Gibson, J.M., Osbourn, G.C. and Tromp, R.M. (in press); (Materials Research Society 1985 Fall Meeting in Boston).Google Scholar
13. Kaplan, R., Surface Science 93, 145 (1980).Google Scholar
14. Ohmachi, Y., Nishioka, T. and Shinoda, V., J Appl. Phys. 54, 5466 (1983).Google Scholar
15. Kurov, G.A., Semiletov, S.A. and Pinsker, Z.G., Sov. Phys. Crystallogr. 2, 53 (1957).Google Scholar
16. Sloope, B.W. and Tiller, C.O., J. App1. Phys. 38, 140 (1967).Google Scholar
17. Hasegawa, H. and Hartnagel, H.L., J. Electrochem. Soc. 123, 713 (1976).Google Scholar
18. Ohmachi, Y., Nishioka, T. and Shinoda, Y., Appl. Phys. lett. 43, 971 (1983).Google Scholar
19. Nishioka, T., Shinoda, Y. and Ohmachi, Y., J. Appl. Phys. 56, 336 (1984).Google Scholar
20. Ohmachi, Y., Shinoda, Y. and Nishioka, T., in 1983 IEDM Technical Digest, pp. 315318.Google Scholar
21. Brice, J.C. and Whiffin, P.A.C., Solid State Electron. 7, 183 (1964).Google Scholar