Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T19:32:23.888Z Has data issue: false hasContentIssue false

GaAs/AlGaAs Quantum Well Mixing Using Low Energy Ion Implantation and Rapid Thermal Annealing

Published online by Cambridge University Press:  26 February 2011

B. Elman
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
Emil S. Koteles
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
P. Melman
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
C. A. Armiento
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
Get access

Abstract

Low energy ion implantation followed by rapid thermal annealing (RTA) was utilized to modify exciton transition energies of MBE- rown GaAs/AlGaAs quantum wells (QW). The samples were irradiated with an 75As ion beam with an energy low enough that the depth of the disordered region was spatially separated from the QWs. After RTA, exciton energies (determined using optical spectroscopy) showed large increases which were dependent on QW widths and the implantation fluence with no significant increases in peak linewidths. These energy shifts were interpreted as resulting from the modification of the shapes of the as-grown QWs from square (abrupt interfaces) to rounded due to enhanced Ga and Al interdiffusion in irradiated areas. These results are similar to our data on the RTA of the same structures capped with SiO2 and are consistent with the model of enhanced intermixing of Al and Ga atoms due to diffusion of vacancies generated near the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kirillov, D., Merz, J.L., Dapkus, P.D., and Coleman, J.J., J. Appl. Phys. 55, 1105 (1984).CrossRefGoogle Scholar
2 Epler, J.E., Burnham, R.D., Tornton, R.L., Paoli, T.L., and Bashaw, M.C., Appl. Phys. Lett. 49, 1447 (1986)Google Scholar
3 Ralston, J., Moretti, A.L., Jain, R.K., and Chambers, F.A., Appl. Phys. Lett. 50, 1817 (1987).Google Scholar
4 Laidig, W.D., Holonyak, N. Jr., Camras, M.D., Hess, K., Coleman, J.J., Dapkus, P.D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
5 Camras, M.D., Holonyak, N. Jr., Hess, K., Ludowise, M.J., Dietze, W.T., and Lewis, C.R., Appl. Phys. Lett. 42, 185 (1983).CrossRefGoogle Scholar
6 Meehan, K., Holonyak, N. Jr., Brown, J.M., Nixon, M.A., Gavrilovic, P., Burnham, R.D., Appl. Phys. Lett. 45,549 (1984).Google Scholar
7 Deppe, D.G., J Guido, L., Holonyak, N. Jr., Hsieh, K.C., Burnham, R.D., Tornton, R.L., and Paoli, T.L., Appl. Phys. Lett. 49, 510 (1986).CrossRefGoogle Scholar
8 Ralston, J.D., O'Brien, S., Wicks, G.W., and Eastman, L.F., Appl. Phys. Lett. 52, 1151 (1988).CrossRefGoogle Scholar
9 Koteles, Emil S., Elman, B., Holmstrom, R.P., Melman, P., Chi, J.Y., Xin, Wen, Powers, J., and Owens, D., to be published in Superlattices and Microstructures.Google Scholar
10 Gavrilovic, P., Deppe, D.G., Meehan, K., Holonyak, N. Jr., and Coleman, J.J., Appl. Phys. Lett. 47, 130 (1985).Google Scholar
11 Hirayama, Y., Suzuki, Y., and Okamoto, H., Jpn. J. Appl. Phys. 24, 1498 (1985).Google Scholar
12 Cibert, J., Petroff, P.M., Werder, D.J., Pearton, S.J., Gossard, A.C., and English, J.H., Appl. Phys. Lett. 49, 223 (1986).Google Scholar
13 Mei, P., Venkatesan, T., Schwartz, S.A., Stoffel, N.G., Harbison, J.P., Hart, D.L., and Florez, L.A., Appl. Phys. Lett. 52, 1487 (1988).Google Scholar
14 Armiento, C.A. and Prince, F., Appl. Phys. Lett. 48, 1623 (1986).Google Scholar
15 Elman, B., Koteles, Emil S., Melman, P., and Armiento, C.A., unpublished.Google Scholar