Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:42:51.972Z Has data issue: false hasContentIssue false

The (Ga2O3)1−x(Gd2O3)x, Oxides with x = 0–1.0 for GaAs Passivation

Published online by Cambridge University Press:  10 February 2011

J. Kwo
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, [email protected]
M. Hong
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, [email protected]
A. R. Kortan
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, [email protected]
D. W. Murphy
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, [email protected]
J. P. Mannaerts
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, [email protected]
A. M. Sergent
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, [email protected]
Y. C. Wang
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, [email protected]
K. C. Hsieh
Affiliation:
Department of Electrical and Computer Engineering, Univ. Illinois, Urbana, IL 61801
Get access

Abstract

Ga2O3(Gd2O3) film was previously discovered to effectively passivate GaAs surface, and the employment of this oxide as gate dielectric has led to the first demonstration of the enhancement-mode GaAs metal oxide semiconductor field effect transistors (MOSFETs) with inversion. In order to gain insight into the passivation mechanism and elucidate the role of Gd2O3, we have carried out a systematic study of the dependence of the structural and dielectric properties of (Ga2O3)1−x(Gd2O3) on the Gd (x) content. Our studies indicate that it is necessary to have the Gd addition exceeding 14% in order to form an electrically insulating dielectric with low interfacial state density. Furthermore, we found that pure Gd2O3 film grows epitaxially on GaAs in the single domain, (110) oriented Mn2O3 structure. This new crystalline dielectric has a dielectric constant ∼10, and shows excellent dielectric properties with low leakage and high breakdown strength even for films as thin as 2.5 nm. We expect that epitaxial growth of the Mn2O3 structure can be extended to other rare earth oxides, and to other semiconductor substrates like Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hong, M., Passlack, M., Mannaerts, J. P., Kwo, J., Chu, S. N. G., Moriya, N., Hou, S. Y., and Fratello, V. J., J. Vac. Sci. Technol. B 14 (3), 2297, (1996).Google Scholar
2. Passlack, M., Hong, M., Mannaerts, J. P., Kwo, J., Opila, R. L., Chu, S. N. G., Moriya, N., and Ren, F., IEEE Transaction of Electron Devices, 44 (2), 214, (1997).Google Scholar
3. Ren, F., Hong, M., Hobson, W. S., Kuo, J. M., Lothian, J. R., Mannaerts, J. P., Kwo, J., Chen, Y. K., and Cho, A. Y., IEEE IEDM Technical Digest p.943, (1996) and Solid State Electronics, 41 (11), p.1751, (1997).Google Scholar
4. Ren, F., Kuo, J. M., Hong, M., Hobson, W. S., Lothian, J. R., Lin, J., Tseng, W. S., Mannaerts, J. P., Kwo, J., Chu, S. N. G., Chen, Y. K., and Cho, A. Y., IEEE Electron Device Letters, 19 (8), 309, (1998).Google Scholar
5. Wang, Y. C., Hong, M., Kuo, J. M., Mannaerts, J. P., Kwo, J., Tsai, H. S., Krajewski, J. J., Chen, Y. K., and Cho, A. Y., IEEE IEDM Technical Digest p.67, (1998).Google Scholar
6. Hasegawa., H. “Properties of Gallium Arsenide”, 3rd Edition, p. 447, Ed. By M. R. Brozel and G. E. Stillman, Published by INSPEC, The Institution of Electrical Engineers, London, UK, 1996.Google Scholar
7. A review can be found in “Physics and Chemistry of IUl-V Compound Semiconductor Interfaces”, Ed. Wilmsen, C. W., Plenum, New York, 1985.Google Scholar
8. Hong, M., Liu, C. T., Reese, H., and Kwo, J., “Semiconductor-Insulator Interfaces” in Encyclopedia of Electrical and Electronics Eng., John Wiley & Sons, New York, 1999.Google Scholar
9. Passlack, M., Hong, M., Mannaerts, J. P., and Tu, L. W., Appl. Phys. Lett. 68(25), 3605, (1996).Google Scholar
10. Dutta, N. K., Fischer, R. J., Hunt, N. E. J., Passlack, M., Schubert, E. F., and Zydzik, G. J., “Gallium oxide coatings for optoelectronic devices using electron beam evaporation of a high purity single crystal Ga5Gd3012 source”, US Patent 5,550,089.Google Scholar
11. Kwo, J., Murphy, D. W., Hong, M., Mannaerts, J. P., Opila, R. L., Masaitis, R. L., and Sergent, A. M., presented at 17th North American MBE Conf Oct.4–7, 1998 at Penn State Univ. and to be published in JVST (1999).Google Scholar
12. Wang, Y. C., Hong, M., Kuo, J. M., Mannaerts, J. P., Kwo, J., Tsai, H. S., Krajewski, J. J., Weiner, J. S., Chen, Y. K., and Cho, A. Y., paper Z5.5 in this Symposium.Google Scholar
13. Lay, T. S., Hong, M., Kwo, J., Mannaerts, J. P., Hung, W. H., Huang, D. J., paper Z3.7, in this Symposium.Google Scholar
14. Kortan, A. R., Hong, M., Kwo, J., Mannaerts, J. P., and Kopylov, N., paper Z1.7, in this Symposium.Google Scholar
15. Hong, M., Mannaerts, J. P., Marcus, M. A., Kwo, J., Sergent, A. M., Chou, L. J., Hsieh, K. C., and Cheng, K. Y., J. Vac. Sci. Technol. B16 (3), 1395, (1998).Google Scholar
16. Kortan, A. R., Erbil, A., Birgeneau., R. J., Dresselhaus, M. S., Phys. Rev. Lett. 47, 1206, (1981).Google Scholar
17. Hong, M., Kwo, J., Kortan, A. R., Manaerts, J. P., and Sergent, A. M., Science, 283, pp. 18971900, (1999).Google Scholar
18. Geller, S., Acta Cryst. B27, 821, (1971).Google Scholar
19. Dahlke, W. E. and Sze, S. M., Solid State Electronics, 10, 865873 (1967).Google Scholar
20. Fleischer, M. and Meixner, H., J. Appl. Phys. 74, 300, (1993).Google Scholar
21. Harwig, T. and Schoonman, J., J. Solid State Chem. 23, 205, (1978).Google Scholar
22. Cojocaru, L. N. and Alecu, I. D., Z. Phys. Chem. 84, 325, (1973).Google Scholar
23. Passlack, M., and Abrokwah, J. K., ”Method of Forming a Ga203 layer”, US patent 5,597,768Google Scholar