Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-12T08:38:57.279Z Has data issue: false hasContentIssue false

Furnace Oxynitridation in Nitric Oxide of Thin Silicon Oxide: Atomic Transport Mechanisms and Interfacial Microstructure

Published online by Cambridge University Press:  10 February 2011

I. Trimaille
Affiliation:
Groupe de Physique des Solides, Universities Paris 7 and Paris 6, UMR-CNRS 75-88, TOUR 23, 2 place Jussieu, 75251 PARIS CEDEX 05, FRANCE, [email protected]
J.-J. Ganem
Affiliation:
Groupe de Physique des Solides, Universities Paris 7 and Paris 6, UMR-CNRS 75-88, TOUR 23, 2 place Jussieu, 75251 PARIS CEDEX 05, FRANCE
L. G. Gosset
Affiliation:
Groupe de Physique des Solides, Universities Paris 7 and Paris 6, UMR-CNRS 75-88, TOUR 23, 2 place Jussieu, 75251 PARIS CEDEX 05, FRANCE
O. Bailly
Affiliation:
Groupe de Physique des Solides, Universities Paris 7 and Paris 6, UMR-CNRS 75-88, TOUR 23, 2 place Jussieu, 75251 PARIS CEDEX 05, FRANCE
S. Rigo
Affiliation:
Groupe de Physique des Solides, Universities Paris 7 and Paris 6, UMR-CNRS 75-88, TOUR 23, 2 place Jussieu, 75251 PARIS CEDEX 05, FRANCE
J.-L. Cantin
Affiliation:
Groupe de Physique des Solides, Universities Paris 7 and Paris 6, UMR-CNRS 75-88, TOUR 23, 2 place Jussieu, 75251 PARIS CEDEX 05, FRANCE
H. J. Von Bardeleben
Affiliation:
Groupe de Physique des Solides, Universities Paris 7 and Paris 6, UMR-CNRS 75-88, TOUR 23, 2 place Jussieu, 75251 PARIS CEDEX 05, FRANCE
Get access

Abstract

Oxynitridation in nitric oxide of commercial 5 nm and 13 nm oxides is investigated, as well as reoxidation steps. The results are discussed in terms of atomic transport mechanisms and modification of interfacial microstructure. Atomic transport is studied through the use of isotopic tracing and nuclear reactions analyses (NRA): we measured the atomic areal densities (14N, 15N, 16O, 18O) in the films and the concentration depth profiles of the heavy and stable isotopes (15N, 18O) with near surface subnanometric resolution. To scan the evolution of the interfacial microstructure, Pb0 centers concentrations were measured by electron paramagnetic resonance spectroscopy (EPR), after each treatment step. The previously proposed mechanisms for NO oxynitridation of silica are confirmed: i) the NO molecules diffuse via interstitial sites, without reaction with the lattice, before reacting with the dielectric/Si interface; ii) at the external surface region, oxygen exchange is observed due to a step-by-step motion of network oxygen atoms induced by the presence of network defects. During reoxidation in O2 neither loss or observable redistribution of nitrogen is evidenced. For the 13-nm thick film, in the external surface region, the oxygen exchange is seen to be more effective than in the case of silica (or silicon) oxidation: that is O2 is more reactive on NO-nitrided silica than on pure silica. The concentration of Pbo centers decreases after the NO thermal step and increases again after the further reoxidation step.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Trimaille, I., Ganem, J. J., Gosset, L. G., Rigo, S., Baumvol, I. J. R., Stedile, F. C., Rochet, F., Dufour, G. and Jolly, F. in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by Garfunkel, E., Gusev, E., and Vul', A. (Kluwer Academic Publishers, Dordrecht, 1998), p. 165.Google Scholar
2.Gosset, L. G., Ganem, J. J., Bardeleben, H. J. von, Rigo, S., Trimaille, I., Cantin, J. L., Åkermark, T., and Vickridge, I. C., J. Appl. Phys. 85, 3661 (1999).Google Scholar
3.Gusev, E. P., Lu, H. C., Garfunkel, E., Gustafsson, T., Green, M. L., Brasen, D., and Lennard, W. N., J. Appl. Phys. 84, 2980 (1998).Google Scholar
4.Ganem, J. J., Rigo, S., Trimaille, I., Baumvol, I. J. R. and Stedile, F. C., Appl. Phys. Lett. 68, 2366 (1996).Google Scholar
5.Bersani, M., Vanzetti, L., Sbetti, M., Anderle, M., Appl. Surf. Sci. 144–145, 301 (1999).Google Scholar