Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T09:08:51.501Z Has data issue: false hasContentIssue false

Fundamental insight into control of thermal conductivity in silicon-germanium alloy nanowires

Published online by Cambridge University Press:  27 June 2014

Yongjin Lee
Affiliation:
McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, U.S.A.
Gyeong S. Hwang
Affiliation:
McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, U.S.A.
Get access

Abstract

We present a computational analysis of thermal transport in Silicon-Germanium alloy nanowires (SiGeNWs), particularly focusing on the relative roles of alloy scattering and boundary scattering to the significant reduction of thermal conductivity (κ). Our nonequilibrium molecular dynamics (NEMD) simulations confirm the strong dependence of κ on Si:Ge ratio, as observed in previous experimental studies. Interestingly, as the amount of impurity increases, the difference in κ between SiGe bulk and SiGeNW becomes smaller. Especially, κSiGeNW and κSiGe have similar κ values when the Ge content is 20-80 %. From a nonequilibrium Green’s function (NEGF)-density functional theory (DFT) analysis, it is suggested that the most reduction in transmission channels is attributed to the strong alloy scattering effect for both Si0.8Ge0.2 bulk and Si0.8Ge0.2 NW. The boundary scattering effect in the SiGe alloy system seems to be unimportant as alloy scattering is dominant. The improved understanding provides fundamental insight into how to modify Si-based materials to enhance their thermoelectric (TE) properties through nanostructuring and alloying.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yin, L., Lee, E.K., Lee, J.W., Whang, D., Choi, B.L., and Yu, C., Appl. Phys. Lett. 101, 043114 (2012).CrossRefGoogle Scholar
Kim, H., Kim, I., Choi, H.-J., and Kim, W., Appl. Phys. Lett. 96, 233106 (2010).CrossRefGoogle Scholar
Martinez, J.A., Provencio, P.P., Picraux, S.T., Sullivan, J.P., and Swartzentruber, B.S., J. Appl. Phys. 110, 074317 (2011).CrossRefGoogle Scholar
Lee, E.K., Yin, L., Lee, Y., Lee, J.W., Lee, S.J., Lee, J., Cha, S.N., Whang, D., Hwang, G.S., Hippalgaonkar, K., Majumdar, A., Yu, C., Choi, B.Y., Kim, J.M., and Kim, K., Nano Letters 12, 2918 (2012).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 177, 1 (1995).CrossRefGoogle Scholar
Muller-Plathe, F., J. Chem. Phys. 106, 6082 (1997).CrossRefGoogle Scholar
Turney, J.E., McGaughey, A.J.H., and Amon, C.H., Phys. Rev. B 79, 224305 (2009).CrossRefGoogle Scholar
Schaffler, F., Properties of Advanced Semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe (New York: Wiley, 2001).Google Scholar
Kittel, C., Introduction to Solid State Physics, 7th Ed. (Wiley, New York, 2006).Google Scholar
Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).CrossRefGoogle Scholar
Lee, Y. and Hwang, G.S., J. Appl. Phys. 114, 174910 (2013).CrossRefGoogle Scholar
Lee, Y. and Hwang, G.S., Phys. Rev. B 85, 125204 (2012).CrossRefGoogle Scholar
Lee, Y., Lee, S., and Hwang, G.S., Phy. Rev. B 83, 125202 (2011).CrossRefGoogle Scholar
Garg, J., Bonini, N., Kozinsky, B., and Marzari, N., Phys. Rev. Lett. 106, 045901 (2011).CrossRefGoogle Scholar
Li, D., Wu, Y., Fan, R., Yang, P., and Majumdar, A., Appl. Phys. Lett. 83, 3186 (2003).CrossRefGoogle Scholar
Wang, J.-S., Wang, J., and L&udblac, J.T.;, Eur. Phys. J. B 62, 381 (2008).CrossRefGoogle Scholar
Wang, J.-S., Wang, J., and Zeng, N., Phys. Rev. B 74, 033408 (2006).CrossRefGoogle Scholar