Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:13:28.717Z Has data issue: false hasContentIssue false

Functionalized Nanoparticles for Composite Polymer Electrolyte

Published online by Cambridge University Press:  01 February 2011

Gilles Toussaint
Affiliation:
[email protected], universite de liege, chemistry, allee de la chimie, batiment b6a, liege, 4000, Belgium, +3243663438
Catherine Henrist
Affiliation:
[email protected], University of Liege, Chemistry, Allee de la chimie, batiment b6a, Liege, 4000, Belgium
Christophe Detrembleur
Affiliation:
[email protected], University of Liege, Chemistry, Allee de la chimie, batiment b6a, Liege, 4000, Belgium
Robert Jerome
Affiliation:
[email protected], University of Liege, Chemistry, Allee de la chimie, batiment b6a, Liege, 4000, Belgium
Rudi Cloots
Affiliation:
[email protected], University of Liege, Chemistry, Allee de la chimie, batiment b6a, Liege, 4000, Belgium
Get access

Abstract

The covalent grafting of low-molecular weight poly(ethylene glycol) (PEG) onto high surface silica nanoparticles (Cab-O-Sil EH5) has been accomplished by a multi-step reaction. Reaction involved PEG attachment by epoxide-terminated ring opening of a sylilation agent previously grafted. A maximum grafting density of 0.42 PEG per nm2 has been determined by thermogravimetric analysis (TGA). Differential scanning (DSC) calorimetry confirmed the modification of silica after reaction. Infra-Red (IR) analysis and Carbon-13 Magic Angle Spinning Nuclear Magnetic Resonance (13C MAS NMR) confirmed PEG fixation and opening of the epoxide ring.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vaia, R. A., Wagner, H.D., Materials Today, November, 32 (2004).Google Scholar
2. Krawiec, W., Scanlon, L.G., Fellner, J.P., Vaia, R.A., Vasudevan, S., Giannelis, E.P., J. Power Sources 54, 310 (1995).Google Scholar
3. Alexandre, M., Dubois, P., Materials Sciences and Engeneering 28, 1 (2000).Google Scholar
4. Ulman, A., MRS Bulletin June, 46 (1995).Google Scholar
5. Harris, J.M., Zalpski, S., “Polyethylene glycol: chemistry and biological applications”, American Chemical Society (Washigton, DC, 1997).Google Scholar
6. Chen, H., Zhang, Z., Chen, Y., Brook, M. A., Sheardown, H., Biomaterials 26, 2391 (2005).Google Scholar
7. Chen, H.W., Chiu, C.Y., Wu, H.W., Shen, I.W., Chang, F.C., Polymer 43, 5011 (2002)Google Scholar
8. Wieczorek, W., Materials Sciences and Engeneering B15, 108 (1992).Google Scholar
9. Reddy, M.J., Chu, P.P., Journal of Power Sources 135, 1 (2004)Google Scholar
10. Etienne, S., Becker, C., Ruch, D., Grignard, B., Cartigny, G., Detrembleur, C., Calberg, C., Jerome, R., Journal of Thermal Analysis and Calorimetry 87, 1, 101 (2007).Google Scholar
11. Zhao, B., Brittain, W.J., Progress in Polymer Science 25, 677 (2000).Google Scholar
12. Zaper, A.M., Koenig, J.L., Polymer composites 6, 3, 156 (1985).Google Scholar
13. Mkhatresh, O.A., Heatley, F., Polymer International 53 1336 (2004).Google Scholar