Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:30:07.388Z Has data issue: false hasContentIssue false

Functional Mimics of the Dimanganese Catalase Enzyme

Published online by Cambridge University Press:  15 February 2011

P. J. Pessiki
Affiliation:
Princeton University, Department of Chemistry, Hoyt Laboratory, Princeton, NJ
S. V. Khangulov
Affiliation:
Princeton University, Department of Chemistry, Hoyt Laboratory, Princeton, NJ
G. C. Dismukes
Affiliation:
Princeton University, Department of Chemistry, Hoyt Laboratory, Princeton, NJ
V. V. Barynin
Affiliation:
Institute of Crystallography, Russian Academy of Sciences, Moscow
Get access

Abstract

A series of synthetic enzyme mimics of the dimanganese catalase enzyme from bacterial cells has been prepared and the chemical mechanism of their activity has been examined. These are formulated as [LMn2X]Y2, μ2-X = CH3CO2, ClCH2CO2, Cl, OH; Y = ClO4, BPh4, CH3COO, Cl, Br, utilizing the septadentate ligand, HL = N,N,N′,N′-tetrakis(benzimidazole)-1,3-diaminopropan-2-ol. These catalyze the disproportionation of H2O2 into O2 and H2O by a mechanism indistinguishable from the enzyme mechanism. Like the enzyme three electrons can be removed from Mn to form four oxidation states ranging from Mn2(II,II) to Mn2(III,IV). The electrochemical properties, the energy level spacing between electronic spin states (S =0, 1..5), ligand exchange and disproportionation kinetics can be controlled by the choice of the bridging ligand X. The mechanism involves the cyclic oxidation and reduction of the Mn2(II,II) and Mn3(III,III) species by H2O. An important component of the kinetic barrier in the rate-limiting step appears to be the free energy required for oxidation to the Mn2(III,III) species. This is determined by the Mn ligands. An ENDOR study of the manganese catalase(III,IV) from T. thermophilus has revealed the Mn coordination environment to be predominantly carboxylate protein residues. This ligand environment greatly lowers the barrier to oxidation, enabling catalysis at rates approaching the diffusion limit.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1a. Que, L. and True, A., Dinuclear Iron and Manganese-Oxo Sites in Biology in Prog. Inorg. Chem. (Lippard, S. J., Ed.), 38, 97200 (1990).Google Scholar
b. Markham, G. D., Manganese in Proteins with Multiple Metal Ion Binding Sites, Manganese in Metablolism and Enzyme Function (Schram, V. L. and Wedler, F. C., Eds.) Academic Press, New York, pp. 379403(1986).Google Scholar
c. Pecoraro, V. L., Manganese Redox Enzymes Verlag Chemie, New York, (1992) in press..Google Scholar
d. Dismukes, G. C., “Polynuclear Manganese Enzymes” in Bioinorganic Catalysis (Reedijk, J.; ed.) Marcel Dekker, Amsterdam, (1992) in press.Google Scholar
2. Amstad, P., Peskin, A., Shah, G., Mirault, M-E., Moret, R., Zbinden, I., Cerutti, P. Biochemistry, 30,.93059313 (1991).Google Scholar
3a. Kono, Y. and Fridovich, I., J.Biol. Chem., 258: 60156019 (1983).Google Scholar
b. Kono, Y. and Fridovich, I, J.Biol.Chem., 258: 1364613648 (1983).Google Scholar
c. Beyer, W.F. and Fridovich, I., Biochemistry, 24: 64606467 (1985).CrossRefGoogle Scholar
d. Beyer, W. F. and Fridovich, I. in “Manganese in Metabolism and Enzyme Function” (Schram, V. L., Wedler, F. C., Eds.) Academic Press, New York, pp. 193220 (1986).CrossRefGoogle Scholar
e. Beyer, W. F. and Fridovich, I. in Oxygen Radicals in Biology and Medicine: Basic Life Sciences, (Simic, M. G., Taylor, K. A., Ward, J. F. and Sonntg, C. von, Eds.) Plenum Press, New York, 651661 (1988).Google Scholar
4a. Vainshtein, B.K., Melik-Adamyan, V.R., Barynin, V.V., and Vagin, A. A. in Progress in Bioorganic Chemistry and Molecular Biology (Ed.Ovchinnikov, Yu.) Amsterdam, Elsevier. Publ., pp. 117132 (1984).Google Scholar
b. Barynin, V.V., Grebenko, A.I., Doklady Acad.Sci.,USSR 286: 461464 (1986).Google Scholar
c. Allgood, G. S. and Perry, J. J., J. Bacteriol., 168: 563567 (1986).Google Scholar
5a. Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., Grebenko, A. I., Proc, Int.Sympl Biomol, Struct, Interactions, Suppl J. Biosci. 8 (l&2), pp. 471479 (1985).CrossRefGoogle Scholar
b. Barynin, V. V., Vagin, A. A., Melik-Adamyan, W. R., Grebenko, A. I., Khangulov, S. V., Popov, A. N., Andrianova, M. E., Vainshtein, B. K. Dokl. Akad. Nauk. SSSR [Crystallogr.] 288(4), 877880 [Russ] (1986).Google Scholar
6. Nordlund, P. Sjoberg, B-M., and Eklund, H., Nature, 345: 593598 (1990).Google Scholar
7. Khangulov, S.V., Barynin, V.V., Melik-Adamyan, V.R., Grebenko, A.I., Voevodskay, N.V., Blumenfeld, L.A., Dobrykov, S.N., Il'ysova, V.B., Bioorgan. Khimiya 12: 741748 [Russ.] (1986).Google Scholar
8a. Khangulov., S. V., Voyevodskaya, N. V., Barynin, V. V., Grebenko, A. I., and Melik-damyan, V. R., Biofizika, 32: 10441051(Engl.), 960–966 (Russ.) (1987).Google Scholar
b. Fronko, R.M., Penner-Hahn, J.E., and Bender, C.J., J.Amer.Chem. Soc., 110: 75547555 (1988).CrossRefGoogle Scholar
9. Khangulov, S.V.; Barynin, V.V., Antonyuk-Barynina, S. V., Biochim. Biophys. Acta, 1020: 2533 (1990).CrossRefGoogle Scholar
10. Khangulov, S.V.; Barynin, V.V.; Voevodskaya, N.V.; Grebenko, A.I., Biochim. Biophys. Acta, 1020: 305310 (1990).CrossRefGoogle Scholar
11. Khangulov, S.V.; Andreeva, N.E.; Gerasimenko, V.V., Goldfeld, M.G. Barynin, V.V.; Grebenko, A.I. Russ., J. Phys. Chem., 64: 1016 (Engl.) (1990).Google Scholar
12. Khangulov, S.V.; Goldfeld, M.G., Gerasimenko, V.V.; Andreeva, N.E.; Barynin, V.V.; Grebenko, A.I., J. Inorg. Biochem., 40: 279292 (1990).CrossRefGoogle Scholar
13a. Sheats, J.E., Czernuziewicz, R., Dismukes, G.C., Rheingold, A., Petrouleas, V., Stubbe, J., Armstrong, W. H., Beer, R. and Lippard, S. J., J. Amer. Chem. Soc,. 109: 14351444 (1987).Google Scholar
b. Wieghardt, K., Bossek, U., Bonvoisin, J., Beauvillain, P., Girerd, J-J., Nuber, B., Weiss, J. and Heinze, J., Angew. Chemie, Int. Ed., 25: 10301034 (1986).CrossRefGoogle Scholar
14. Wieghardt, K., Bossek, U., Nuber, B., Weiss, J., Bonvoisin, J., Corbella, M., Vitols, S. and Girerd, J-J., J. Amer. Chem. Soc., 10: 73987405 (1988).CrossRefGoogle Scholar
15. Bossek, U., Weyhermuller, T., Wieghardt, K., Nuber, B., Weiss, J., J. Amer. Chem. Soc., 112: 63876388 (1990).Google Scholar
16. Mathur, P., Crowder, M. and Dismukes, G. C., J. Amer. Chem. Soc., 109: 52275232 (1987).CrossRefGoogle Scholar
17a) Owen, J. and Harris, E. A. Electron Paramagnetic Resonance (ed. Geschwind, S.) Plenum Press, New York, (1972)Google Scholar
b) Heming, M., Lehmann, G., Mosebach, H., Siegel, E., Solid State Comm., 44: 543546 (1982)Google Scholar
c) Khangulov, S.V.; Barynin, V.V. Dismukes, G.C. Pessiki, P.J., manuscript in prepartion.Google Scholar
18. Cooper, S. R., Dismukes, G. C., Klein, M. P., Calvin, M. C., J. Amer. Chem. Soc, 100: 72487252 (1978).CrossRefGoogle Scholar
19. Diril, H., Chang, H-R., Nilges, M. J., Zhang, X., Potenza, J. A., Schugar, H. J., Isied, S. S., Hendrickson, D. N., J. Amer. Chem. Soc., 111: 51025114 (1989).Google Scholar
20. Doi, K., McCracken, J., Peisach, J., Aisen, P. J. Biol. Chem. 26, 57575763 (1988).CrossRefGoogle Scholar
21. Stenkamp, R. E. Sieker, C., Jensen, L. H., McCallum, J. D. Sanders-Loehr, , J. Proc. Nat. Acad. Sci. USA, 82: 713716 (1985).Google Scholar
22a. Zhang, J-H., Kurtz, D. M., Xia, Y. M., Debrunner, P. G. Biochemistry, 30: 583589 (1991).Google Scholar
b. Zhang, J-H. and Kurtz, D., priv. commun.Google Scholar
23. Messerschmidt, A., Huber, R. Eur. J. Biochem. 187, 341352 (1990).CrossRefGoogle Scholar
24. Stallings, W. C., Pattridge, K. A., Strong, R. K., Ludwig, M. L., J. Biol. Chem. 259. 1069510699 (1984).CrossRefGoogle Scholar