Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:16:12.554Z Has data issue: false hasContentIssue false

Fully Planar Ion-Implanted 0.98 μm Strained Quantum Well Laser

Published online by Cambridge University Press:  22 February 2011

W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. Bylsma
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. G. Elliman
Affiliation:
Australian National University, Canterra ACT 2601, Australia
Get access

Abstract

GaAs-InGaAs quantum well laser structures were fabricated using a 5 MeV O+ implant (∼1015 cm−2 dose) to disorder the quantum well for optical isolation upon post-implant annealing. End-of-range disorder is placed in the underlying substrate, and consisted of small dislocation loops. Electrical isolation was provided by a subsequent multiple energy (40-300 keV) O+ implant scheme. Masking for both implant steps was obtained using a lift-off Au deposition. This fully planar process is considerably simpler than the Si diffusion process for quantum well disordering that is commonly employed for 0.98 gim laser fabrication. A discussion will be given of the relative advantages and disadvantages of the two processes, with particular emphasis on reliability issues.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takeshita, T., Okayasu, M., Kogure, O. and Uehara, S., Jap. J. Appl. Phys. 29 L1138 (1990).Google Scholar
2. Anderson, T. G., Chen, Z., Kulakovskii, V., Uddia, A. and Vallin, J. T., Phys. Rev. B37 (4032) 1988.Google Scholar
3. Laming, R. I., Reekie, L., Morkel, P. R. and Payne, D. N., Electron. Lett. 25 (455) 1989.Google Scholar
4. Yablonovitch, E. and Kane, E. O., IEEE J. Lightwave Technol. 6 (1242) 1988.Google Scholar
5. Eng, L. E., Chen, T. R., Zhung, Y. H., Zhao, B. and Yariv, A., Appl. Phys. Lett. 55 (1378) 1989.Google Scholar
6. Fischer, S. E., Fekete, D., Peak, G. and Ballantyne, J. M., Appl. Phys. Lett. 50 (714) 1987.Google Scholar
7. Offsey, S. D., Schaff, W. T., Tasker, P. J., Ennen, H. and Eastman, L. F., Appl. Phys. Lett. 54 (2527) 1989.Google Scholar
8. Chen, T. R., Eng, L., Zhao, B., Zhang, Y., Sanders, S., Morkoc, H. and Jariv, A., IEEE J. Quantum Electr. 26 (1183) 1990.Google Scholar
9. Camias, M. D., Brown, J. M., Holonyak, N., Nixon, M., Kaliski, R., Ludowise, M., Dietze, W. and Lavis, C. R., J. Appl. Phys. 54 (6183) 1983.Google Scholar
10. Suemune, I., Coldren, L. A., Yamanishi, M. and Kan, Y., Appl. Phys. Lett. 53 (1378) 1988.Google Scholar
11. Stutius, W., Gaurilovic, P., Williams, J. E., Meehan, K. and Zavrabi, J. J., Electron. Lett. 24 (1493) 1988.Google Scholar
12. Takeshita, T., Okayasu, M. and Uehara, S., IEEE Photonics Tech. Lett. 2 (849) 1990.Google Scholar
13. Bour, D. P., Dinkel, N. A., Gilbert, D. B., Fabian, K. B. and Harrey, M. G., IEEE Photon. Technol. Lett. 2 (153) 1990.Google Scholar
14. Nagarajan, R., Fukushima, T., Bowers, T. E., Geels, R. S. and Coldren, L. A., Appl. Phys. Lett. 58 (2326) 1991.Google Scholar
15. Offsey, S. D., Lester, L. F., Schaff, W. J. and Eastman, L. F., Appl. Phys. Lett. 58 (2336) 1991.Google Scholar
16. Wu, M. C., Olsson, N. A., Sivco, D. L. and Cho, A. Y., Appl. Phys. Lett. 56 (221) 1990.Google Scholar
17. Dutta, N. K., Lopata, J., Berger, P. R., Sivco, D. L. and Cho, A. Y., Electron. Lett. 27 (680) 1991.Google Scholar
18. Zuo, W. X., Merg, J. L., Fu, R. J. and Hong, C. S., IEEE Photon. Technol. Lett. 3 (400) 1991.Google Scholar
19. Hobson, W. S., Harris, T. D., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 58 (77) 1991.Google Scholar
20. Elliman, R. G., Ridgway, M. C., Jagadish, C., Pearton, S. J., Ren, F., Lothian, J., Fullowan, T., Katz, A., Abernathy, C. R. and Kopf, R., J. Appl. Phys. 71 (1010) 1992.Google Scholar
21. Ren, F., Pearton, S. J., Hobson, W. S., Fullowan, T. R., Lothian, J. and Yanof, A. W., Appl. Phys. Lett. 56 (860) 1990.Google Scholar
22. Pearton, S. J., Ren, F., Lothian, J. R., Fullowan, T. R., Katz, A., Wisk, P., Abernathy, C. R., Kopf, R. F., Elliman, R. G., Ridgway, M. C., Jagadish, C. and Williams, J. S., J. Appl. Phys. 71 4949 (1992).Google Scholar
23. Neethling, J. H. and Synman, H. C., J. Appl. Phys. 60 (941) 1986.Google Scholar