Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:55:47.104Z Has data issue: false hasContentIssue false

Fully Atomistic Analysis of Diffuse X-Ray Scattering Spectra of Silicon Defects

Published online by Cambridge University Press:  15 February 2011

K. Nordlund
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
P. Partyka
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
R. S. Averback
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
Get access

Abstract

Diffuse X-ray scattering is a useful method for studying defects in silicon and metals. Although the traditional approaches of analyzing experimental diffuse X-ray scattering data have given much information about the size of defects and defect clusters, they are not very well suited for determining the atomic configuration. We present a fully atomistic computational method to calculate the diffuse X-ray scattering line profile of an arbitrary atomic configuration, and compare line profiles of point defects and Frenkel pair configurations with experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dederichs, P. H., J. Phys. F.: Metal Phys 3, 471 (1973).Google Scholar
2. Schober, H. R. and Ingle, K. W., J. Phys. F: Metal Phys. 10, 575 (1980).Google Scholar
3. Ehrhart, P., Robrock, K. H., and Shober, H. R., in Physics of Radiation Effects in Crystals, edited by Johnson, R. A. and Orlov, A. N. (Elsevier, Amsterdam, 1986), p. 3.Google Scholar
4. Keating, D. T. and Goland, A. N., Acta Cryst. A 27, 134 (1971).Google Scholar
5. Partyka, P. J. et al, Mat. Res. Soc. Symp. Proc. 439, (1996).Google Scholar
6. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C; The Art of Scientific Computing, 2nd ed. (Cambridge University Press, New York, 1995).Google Scholar
7. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
8. Balamane, H., Halicioglu, T., and Tiller, W. A., Phys. Rev. B 46, 2250 (1992).Google Scholar
9. Caturla, M.-J., Diaz de la Rubia, T., and Gilmer, G. H., Mat. Res. Soc. Symp. Proc. 316, 141 (1994).Google Scholar
10. Zillgen, H. and Ehrhart, P., Nucl. Instr. Meth. Phys. Res. B (1996), accepeted for publication.Google Scholar