Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:19:22.678Z Has data issue: false hasContentIssue false

Fullerene sensitized silicon for near to mid infrared light detection

Published online by Cambridge University Press:  17 April 2019

Gebhard J. Matt
Affiliation:
Institute for Semiconductor Physics, Johannes Kepler University, Linz, Austria
Mateusz Bednorz
Affiliation:
Institute for Semiconductor Physics, Johannes Kepler University, Linz, Austria
Thomas Fromherz
Affiliation:
Institute for Semiconductor Physics, Johannes Kepler University, Linz, Austria
Saeid Zamiri
Affiliation:
Christian Doppler Laboratory for Surface Optics, Johannes Kepler University, Linz, Austria
Christoph Lungenschmied
Affiliation:
Konarka Austria, Linz, Austria
Niyazi Serdar Sariciftci
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, Linz, Austria
Günther Bauer
Affiliation:
Institute for Semiconductor Physics, Johannes Kepler University, Linz, Austria
Get access

Abstract

We report on a novel light sensing scheme based on a silicon/fullerene-derivative hetero-junction that allows the realization of optoelectronic devices for the detection of near to mid infrared radiation. Despite the absent absorption of silicon and the fullerene-derivative for wavelengths beyond 1.1 µm and 0.72 µm, respectively, a hetero-junction of these materials absorbs and generates a photo-current due to absorption in the near to mid infrared. This photo-current is caused by an interfacial absorption mechanism [1].

Besides its scientific relevance, the simple fabrication process of the hetero-junction (e.g. the fullerene-derivative is deposited by spin-coating on Si) as well as its compatibility with the established and rather cheap CMOS technology makes the presented hybrid approach a promising candidate for widespread applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Matt, G. J., Fromherz, T., Bednorz, M., Zamiri, S., Goncalves, G., Lungenschmied, C., Meissner, D., Sitter, H., Sariciftci, N. S., Brabec, C. J., Bauer, G., Adv. Mat. 22, 647 (2010)Google Scholar
[2] Luryi, S., Kastalsky, A., Bean, J., IEEE Trans. Electron. Devices 31, 1135 (1984)Google Scholar
[3] Masini, G., Cencelli, V., Colacea, L., DeNotaristefani, F., Assantoa, G., Physica E 16, 614 (2003)Google Scholar
[4] Rogalski, A., Prog. Quantum Electron. 27, 59 (2003).Google Scholar
[5] Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., Levina, L., Sargent, E. H., Nature 442, 180 (2006).Google Scholar
[6] Yin, Y., Alivisatos, A. P., Nature 437, 664 (2005)Google Scholar
[7] Hummelen, J. C., Knight, B. W., LePeq, F., Wudl, F., Yao, J., Wilkins, C. L., J. Org. Chem. 60, 532 (1995)Google Scholar
[8] Singh, Th. B., Marjanovic, N., Stadler, P., Auinger, M., Matt, G. J., Gunes, S., Sariciftci, N. S., Schwodiauer, R., Bauer, S., J. Appl. Phys. 97, 83714 (2005)Google Scholar
[9] Suto, S., Sakamoto, K., Wakita, T., Phys. Rev. B 56, 7439 (1997)Google Scholar
[10] Ohno, T. R., Chen, Y., Harvey, S. E., Kroll, G. H., Weaver, J. H., Haufler, R. E., Smally, R. E., Phys. Rev. B, 44, 13747-13755 (1991)Google Scholar
[11] Brabec, C. J., Cravino, A., Meissner, D., Sariciftci, N. S., Fromherz, T., Rispens, M. T., Sanchez, L., Hummelen, J. C., Adv. Func. Mater. 11, 374 (2001)Google Scholar
[12] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons, Inc., New York 1981.Google Scholar