Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T07:24:21.088Z Has data issue: false hasContentIssue false

Full Potential Electronic Structure Calculations and the Concept of Stress Fields and Energy Densities for Total Energy Calculations

Published online by Cambridge University Press:  25 February 2011

P. Ziesche*
Affiliation:
Technische Universität Dresden, Institut für Theoretische Physik, Mommsenstr. 13, 0-8027 Dresden, Germany
Get access

Abstract

With the availability of reliable full atomic cell orbitals the possibility arises to calculate pressure or stress, restoring or relaxation driving Hellmann -Feynman forces, and total energies (especially of defects) alternatively and directly via stress tensor fields and energy densities, two local quantities. Although quantum mechanical stress field and energy density can not be defined uniquely, there is a recent interest in these quantities, because integrals with physical meaning are gauge invariant.

The mentioned fields can be defined (i) for the full many-body description with the exact one-particle density matrix and pair distribution function as well as (ii) for the Kohn-Sham one-particle description with LDA or beyond (gradient expansion approximation). If the local stress field for a special system once is constructed, then the global stress tensor and /or forces on nuclei can be calculated via the stress theorem and the force theorem by means of unit cell surface integrals. The energy density can be derived from the terms of the stress field by taking the trace and can be used to calculate defect energies without bothering about the thermodynamic limit.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nielsen, O.H., Martin, R.M., Phys. Rev. B32, 3780 (1985).Google Scholar
2. Folland, N.O., Phys. Rev. B34, 8296, 8305 (1986).CrossRefGoogle Scholar
3. Ziesche, P., Grifenstein, J., Nielsen, O.H., Phys. Rev. B37, 8167 (1988).Google Scholar
4. Ziesche, P., Ann. Physik (Leipzig) 45, 626 (1988).Google Scholar
5. Chetty, N., Martin, R.M., Phys. Rev., in press.Google Scholar
6. Uspenskii, Yu.A., Ziesche, P., Gräfenstein, J., Z. Phys. B76, 193 (1989).CrossRefGoogle Scholar
7. Grfenstein, J., Ziesche, P., Phys. Rev. B41, 3245 (1990).CrossRefGoogle Scholar
8. Grifenstein, J., Thesis, TU Dresden, 1990.Google Scholar
9. Budd, H.F., Vannimenus, J., Phys. Rev. B14, 854 (1976).Google Scholar
10. Ziesche, P., Kaschner, R., Nafari, N., Phys. Rev. B41, 10553 (1990).Google Scholar
11. Ziesche, P., Kaschner, R., Solid State Commun. 78, 703 (1991).Google Scholar
12. Ziesche, P., Grifenstein, J., to be published.Google Scholar
13. Lang, N.D., Kohn, W., Phys. Rev. B1, 4555 (1970).Google Scholar
14. Grifenstein, J., phys. stat. sol. (b) 158, K133 (1990).Google Scholar
15. Uspenskii, Yu.A., in: Ziesche, P. (Ed.), Proc. 19th Symp. Electronic Structure, TU Dresden, 1989, p. 37.Google Scholar