Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:29:33.508Z Has data issue: false hasContentIssue false

Full Band Monte Carlo Simulation of Short Channel MOSFETs in 4H and 6H-SiC

Published online by Cambridge University Press:  10 February 2011

M. Hjelm
Affiliation:
Department of Information Technology, Mid-Sweden University, S-851 70 Sundsvall, Sweden, [email protected] Department of Solid State Electronics, Kungl. Tekniska Hbgskolan (KTH), Elektrum 229, S-164 40 Kista, Sweden
H-E. Nilssoni
Affiliation:
Department of Information Technology, Mid-Sweden University, S-851 70 Sundsvall, Sweden, [email protected] Department of Solid State Electronics, Kungl. Tekniska Hbgskolan (KTH), Elektrum 229, S-164 40 Kista, Sweden
E. Dubaric
Affiliation:
Department of Information Technology, Mid-Sweden University, S-851 70 Sundsvall, Sweden, [email protected] Department of Solid State Electronics, Kungl. Tekniska Hbgskolan (KTH), Elektrum 229, S-164 40 Kista, Sweden
C. Persson
Affiliation:
Department of Physics and Measurement Technology, Linkiping University, S-581 83 Linktping, Sweden
P. Käckell
Affiliation:
Institut für Festkbrpertheorie und Theoretische Optik, Max-Wien-Platz 1, 07743 Jena, Germany
C. S. Petersson
Affiliation:
Department of Solid State Electronics, Kungl. Tekniska Hbgskolan (KTH), Elektrum 229, S-164 40 Kista, Sweden
Get access

Abstract

This is a presentation of a full band Monte Carlo (MC) study, which compares electron transport and device performance for 4H and 6H-SiC 100 nm n-channel MOSFETs. The model used for the electrons is based on data from a full potential band structure calculation using the Local Density Approximation (LDA) to the Density Functional Theory (DFT). For the holes the transport is based on a three band k-p model including spin orbit interaction. The two polytypes are compared regarding surface mobilities obtained with the program, as well as transconductance, unit current gain frequency, carrier velocity, I-V characteristics and energy distribution in the channel for the MOSFETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shenoy, J. N., Cooper, J. A. Jr and Melloch, M. R., IEEE Dev. Lett. 18, 93(1997).10.1109/55.556091Google Scholar
2. Spitz, J., Melloch, M. R., Cooper, J. A. Jr and Capano, A., IEEE Dev. Lett 19, 100(1998).10.1109/55.663527Google Scholar
3. Kdckell, P., Wenzien, B. and Bechstedt, F., Phys. Rev. B 50 (15) 10761 (1994).10.1103/PhysRevB.50.10761Google Scholar
4. Persson, C. and Lindefelt, U., J. Appl Phys. 82 (11), 5,496 (1997).10.1063/1.365578Google Scholar
5. Tsukioka, K., Vasileska, D. and Ferry, D. K., Physica B 185, 466(1993).10.1016/0921-4526(93)90279-FGoogle Scholar
6. Nilsson, H- E., Sannemo, U. and Petersson, C. S., J. Appl. Phys. 80 (6), 33653369 (1996).10.1063/1.363249Google Scholar
7. Schadt, M., Pensl, G., Devaty, R. P., Choyke, W. J., Stein, R. and Stephani, D., Appl. Phys. Lett. 65, 3120(1994).10.1063/1.112455Google Scholar
8. Schaffer, W. J., Negley, G. H., Irvine, K. G. and Palmour, J. W. in Diamond, Silicon Carbide and Nitride Wide Bandgap Semiconductors, edited by Carter, C. H., Gildenbalt, G., Nakamura, S., and Nemanich, R., (Mater. Res. Soc. Proc. 339, Pittsburgh, PA 1994) pp. 595600.Google Scholar
9. Sangiorgi, E. and Pinto, M. R., IEEE Trans. on Elec. Dev. 39 (2), 356361 (1992).10.1109/16.121694Google Scholar
10. Fawcett, W., Boardman, A. D. and Swain, S., J. Phys. Chem. Solids, 31, 1963(1970).10.1016/0022-3697(70)90001-6Google Scholar
11. Avant! Corporation, TCAD Business Unit, Fremont, California. Medici, Two-Dimensional Device Simulation Program, Version 4.1, Users Manual, July 1998.Google Scholar