Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-07T22:29:43.818Z Has data issue: false hasContentIssue false

Fuel Cell Applications of Nanotube-Metal Supported Catalysts

Published online by Cambridge University Press:  11 February 2011

T. Gennett
Affiliation:
NanoPower Research Laboratories, Rochester Institute of Technology Rochester, NY 14623, U.S.A.
B. J. Landi
Affiliation:
NanoPower Research Laboratories, Rochester Institute of Technology Rochester, NY 14623, U.S.A.
J. M. Elich
Affiliation:
NanoPower Research Laboratories, Rochester Institute of Technology Rochester, NY 14623, U.S.A.
K. M. Jones
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
J. L. Alleman
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
P. Lamarre
Affiliation:
Viatronix Inc. Waltham, MA 02451, U.S.A.
R. S. Morris
Affiliation:
Viatronix Inc. Waltham, MA 02451, U.S.A.
R. P. Raffaelle
Affiliation:
NanoPower Research Laboratories, Rochester Institute of Technology Rochester, NY 14623, U.S.A.
M.J. Heben
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Get access

Abstract

Novel carbon materials with nanometer dimensions are of potentially significant importance for a number of advanced technological applications. Within this report we describe the results for the electrochemical characterization of a series of single walled carbon nanotube (SWNT) metal supported catalysts as cathodes for basic fuel cell systems. Compared to the typical carbon black electrocatalysts, the nanotube supported platinum catalyst resulted in up to a 140% improvement in the efficiency for a proton exchange membrane (PEM) fuel cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Serp, P., Feurer, R., Kihn, Y., Kalck, P., Faria, J. L.. Figueiredo, L., J. Mater. Chem., 11, 1980, (2001)Google Scholar
[2] Steigerwalt, E. S., Deluga, G. A., Cliffel, D. E., and Lukehart, C. M., J. Phys. Chem. B, 105, 8097, (2001)Google Scholar
[3] Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., Ryoo, R., Nature, 412, 169, (2001)Google Scholar
[4] Guo, T., Nikolaev, P., Thess, A., Colbert, D.T. and Smalley, R. E., Chem. Phys. Lett., 243, 49 (1995).Google Scholar
[5] Bandow, S., Asaka, S., Saito, Y., Rao, A. M., Grigorian, L., Richter, E., Eckland, P.C., Phys. Rev. Lett. 80, 3779–82, (1998).Google Scholar
[6] Jost, O., Gorbunov, A.A., Pompe, W., Pichker, T., Friedlein, R., Knupfer, M., Reibold, M., Bauer, H. D., Dunsch, L., Golden, M.S., Fink, J., Appl. Phys. Lett 75, 2217–19, (1999).Google Scholar
[7] Katura, H., Kumazawa, y., Maniwa, Y., Ohtsuka, Y., Sen, R., Suzuki, S., Achiba, Y., Carbon 38, 1691–97, (2000).Google Scholar
[8] Munoz, E., Maser, W.K., Benito, A.M., Martinez, M.T., de la Fuente, G.F., Righi, A., Anglaret, E., Sauvajol, J.L., Synthetic Metals 121, 1193–94, (2001).Google Scholar
[9] Dillon, A.C., Gennett, T., Jones, K. M., Alleman, J. L., Parilla, P. A., and Heben, M. J. Adv. Mater., 11, No. 16, (1999) 13541358.Google Scholar
[10] Dillon, A.C., Parilla, P. A., Alleman, J. L., Perkins, J. D. and Heben, M. J., Chem. Phys. Lett. 316, 13 (2000).Google Scholar
[11] Gennett, T., Dillon, A.C., Alleman, J.L., Jones, K.M., Parilla, P.A., Heben, M.J. MRS Proceedings Fall Meeting, Symposium A, December 2000.Google Scholar
[12] Gennett, T., Dillon, A. C., Alleman, J. L., Jones, K. M., Hasoon, F. S., and Heben, M. J.; Chemistry of Materials; 2000; 12(3); 599601.Google Scholar
[13] Dillon, A. C., Gennett, T., Alleman, J.L., Jones, K.M., M.J. MRS Proceedings Fall Meeting, Symposium A, December 2000.Google Scholar
[14] Parilla, P. A., Dillon, A. C., Gennett, T.,, Alleman, J. L., and, Heben, M. J.. MRS Proceedings Fall Meeting, Symposium A December 2000.Google Scholar