Published online by Cambridge University Press: 31 January 2011
The growth of of metallic copper by atomic layer deposition (ALD) using copper(I) di-sec-butylacetamidinate ([Cu(sBu-amd)]2) and molecular hydrogen (H2) on SiO2/Si surfaces has been studied. The mechanisms for the initial surface reaction and chemical bonding evolutions with each ALD cycle are inferred from in situ Fourier transform infrared spectroscopy (FTIR) data. Spectroscopic evidence for Cu agglomeration on SiO2 is presented involving the intensity variations of the SiO2 LO/TO phonon modes after chemical reaction with the Cu precursor and after the H2 precursor cycle. These intensity variations are observed over the first 20 ALD cycles at 185°C.