Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:40:34.190Z Has data issue: false hasContentIssue false

From the Electronic Structure to the Macroscopic Behavior: A Multi-scale Analysis of Plasticity in Intermetallic Compounds

Published online by Cambridge University Press:  21 March 2011

Manfred Fähnle
Affiliation:
Max-Planck-Institut für Metallforschung Heisenbergstr. 1 D-70569 Stuttgart, Germany
Susanne Kohlhammer
Affiliation:
Max-Planck-Institut für Metallforschung Heisenbergstr. 1 D-70569 Stuttgart, Germany
Gabriel Bester
Affiliation:
Max-Planck-Institut für Metallforschung Heisenbergstr. 1 D-70569 Stuttgart, Germany
Get access

Abstract

The influence of crystal interfaces related to stacking faults on the properties of >110< superdislocations and hence on the temperature dependences of the yield stress in intermetallic compounds is investigated. This is achieved by a combination of the ab-initio density functional electron theory (which describes the electronic scale) with the generalized Peierls-Nabarro model (which describes the atomistic scale). For Pt3Al and doped Al3Ti our data do not support the hypothesis that the strong increase of the yield stress with decreasing T at low T results from sessile SISF-bound dislocation dissociations. Alternative explanations are suggested. For Ni3Al our results do not rule out the idea that Kear-Wilsdorf locks are responsible for the experimentally observed anomalous temperature dependence of the yield stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dislocation in Solids 10, ed. Nabarro, F.R.N. and M.S. Duesbery (Elsevier, 1996) a. Y.Q. Sun and P.M. Hazzledine, pp. 29-68. b. V. Vitek, D.P. Pope and J.L. Bassani, pp. 137-185. c. P. Veyssière and G. Saada, pp. 255-441.Google Scholar
2. Schoeck, G., Phil. Mag. A, 69, 1085 (1994).Google Scholar
3. Heredia, F.E., Tichy, G., Pope, D.P. and Vitek, V., Acta Metall., 37, 2755 (1989).Google Scholar
4. Wu, Z.L., Pope, D.P. and Vitek, V., Phil. Mag. A, 70, 159 and 171 (1994).Google Scholar
5. Douin, J., Kumar, K.S. and Veyssière, P., Materials Science and Engineering A, 192/193, 92 (1995).Google Scholar
6. Kumar, M. and Hemker, K.J., J. Mater. Res., 13, 610 (1998).Google Scholar
7. Kohlhammer, S., Fähnle, M. and Schoeck, G., Scripta Materialia, 39, 359 (1998).Google Scholar
8. Pasianot, R., Farkas, D. and Savino, E.J., J. de Physique III, 1, 997 (1991).Google Scholar
9. Börnsen, N., Bester, G., Meyer, B. and Fähnle, M., J. Alloys Comp., 308, 1 (2000).Google Scholar
10. Kohn, W. and Sham, L.J., Phys. Rev. A, 140, 1133 (1965).Google Scholar
11. Blaha, P., Schwarz, K., Sorantin, P. and Trickey, S.B., Comput. Phys. Commun., 59, 399 (1990).Google Scholar
12. Meyer, B., Elsässer, C. and Fähnle, M.: FORTRAN 90 Program for Mixed-Basis Pseudopotential Calculations for Crystals (Max-Planck-Institut für Metallforschung, Stuttgart), unpublished.Google Scholar
13. Zou, J., Fu, C.L. and Yoo, M.H., Intermetallics, 3, 265 (1995).Google Scholar
14. Börnsen, N., Meyer, B., Grotheer, O. and Fähnle, M., J. Phys.: Condens. Matter, 11, L287 (1999).Google Scholar
15. Schoeck, G., Kohlhammer, S. and Fähnle, M., Phil. Mag. Lett., 79, 849 (1999).Google Scholar
16. Paxton, A.T. and Sun, Y.Q., Phil. Mag. A, 78, 85 (1998).Google Scholar
17. Hemker, K.J. and Mills, M.L., Phil. Mag. A, 68, 305 (1993).Google Scholar
18. Karnthaler, H.P., Mühlbacher, E.Th. and Rentenberger, C., Acta Mater., 44, 547 (1996).Google Scholar
19. Veyssière, P., Douin, J. and Beauchamp, P., Phil. Mag. A, 51, 469 (1985).Google Scholar
20. Morris, D.G., Lerf, R. and Leboeuf, M., Acta Metall. Mater., 43, 2825 (1995).Google Scholar
21. Peierls, R., Proc. Phys. Soc., 52, 34 (1940).Google Scholar
22. Nabarro, F.R.N., Proc. Phys. Soc., 59, 256 (1947).Google Scholar
23. Mryasov, O.N., Gornostyrev, Yu.N. and Freeman, A.J., preprint.Google Scholar
24. Saada, G. and Veyssière, P., Phil. Mag. A, 66, 1081 (1992).Google Scholar
25. Paidar, V., Pope, D.P. and Yamaguchi, M., Scripta Metall., 15, 1029 (1981).Google Scholar
26. Schoeck, G., Phil. Mag. Lett., 67, 193 (1993).Google Scholar
27. Fukunaga, K., Kolbe, M., Yamada, K. and Miura, Y., Materials Science and Engineering A, 234–236, 594 (1997).Google Scholar