Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T16:55:27.415Z Has data issue: false hasContentIssue false

From Diamond to Carbon Nanotube Field Emitter

Published online by Cambridge University Press:  21 March 2011

O. Gröning
Affiliation:
Gruppe für Festkörperphysik, Physik Departement der Universität Fribourg, Chemin du musee 3, CH-1700 Fribourg, Switzerland
L-O. Nilsson
Affiliation:
Gruppe für Festkörperphysik, Physik Departement der Universität Fribourg, Chemin du musee 3, CH-1700 Fribourg, Switzerland
P. Gröning
Affiliation:
Gruppe für Festkörperphysik, Physik Departement der Universität Fribourg, Chemin du musee 3, CH-1700 Fribourg, Switzerland
L. Schlapbach
Affiliation:
Gruppe für Festkörperphysik, Physik Departement der Universität Fribourg, Chemin du musee 3, CH-1700 Fribourg, Switzerland
Get access

Abstract

In this paper we review the physics and the expectations that were put into the negative electron affinity (NEA) mediated field emission of chemical vapor deposition CVD diamond films and how the emitter technology made possible by this mechanism could have challenged the classical metal micro-tip field emitter arrays. We discuss the dependency between emitter performance of micro-tip emitter arrays and feature size (size of the field enhancing tip) and due to this to the connection between emitter performance and fabrication costs.

We introduce the concept of the field enhancement distribution function f(β) for a useful characterization of the field emission properties of thin film emitter and show how this distribution function can be measured by scanning anode field emission microscopy. Using f(β) measured on a thin film of randomly oriented multiwalled carbon nanotubes we show that even these kinds of low cost emitters can show a field emission performance comparable to micro-tip arrays, yet that the large spread in field enhancement values between the individual emitter prevent this performance to be fully exploited. This because the field range in which such thin film emitters can be operated is limited due to emitter disruption and triggering of vacuum arcs. Simulations show how resistor-limited emission can solve these limitations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gärtner, G., Geittner, P., Lydtin, H., Ritz, A., Appl. Surf. Sci. 111 (1997) 11 Google Scholar
[2] Temple, D., Materials Science and Engineering, R24 (1999) 185 Google Scholar
[3] Geis, M.W., Twichell, J.C., Lyszczarz, T.M., J. Vac. Sci. Technol. B14 (1996) 2060 Google Scholar
[4] Wang, C., Garcia, A., Ingram, D.C., Lake, M., Kordesch, M.E., Electron. Lett. 27 (1991) 1459 Google Scholar
[5] Gröning, O., Küttel, O.M., Gröning, P., Schlapbach, L., J. Vac. Sci. Technol. B17 (1999) 1970 Google Scholar
[6] Gröning, O., Küttel, O.M., Gröning, P., Schlapbach, L., J. Vac. Sci. Technol. B17 (1999) 1064 Google Scholar
[7] Brodie, I., Spindt, C., Advances in Electronics and Electron Physics 83 (1992) 1 Google Scholar
[8] Gröning, O., Küttel, O.M., Emmenegger, Ch., Gröning, P., Schlapbach, L., J. Vac. Sci. Technol. B18 (2000) 665 Google Scholar
[9] Nilsson, L., Gröning, O., Gröning, P., Küttel, O.M., Schlapbach, L., J. Appl. Phys. in press (2001)Google Scholar
[10] Nilsson, L., Gröning, O., Emmenegger, Ch., Küttel, O.M., Schaller, E., Schlapbach, L., Kind, H., Bonard, J-M., Kern, K., Appl. Phys. Lett. 76 (1999) 2071 Google Scholar