Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-15T20:19:34.838Z Has data issue: false hasContentIssue false

Free-Energy Barrier to Crystallite Nucleation in Solid-Phase Crystallized Poly-Silicon Thin Films

Published online by Cambridge University Press:  10 February 2011

Hideya Kumomi
Affiliation:
Canon Inc., R&D Headquarters, 3–30–2 Shimomaruko, Ohta-ku, Tokyo 146, Japan
Frank G. Shi
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697–2575
Get access

Abstract

We introduce a non-Arrhenius method for measuring free-energy barrier to nucleation, W*, directly from size distribution of crystallites. W* is determined independent of any model for the nucleation barrier and independent of energy barrier to growth. The method is applicable to three-dimensionally growing crystallites, planar crystallites in thin films, and both compact and fractal crystallites. We apply the method to dendritic crystallites obtained by solid-phase crystallization of amorphous Si thin films into which Si+ ions are implanted at various conditions prior to the isothermal annealing. The ion implantation suppresses the nucleation of the crystallites and enhances the crystallite size of the resulting polycrystalline films. The directly measured W* increases as the accelerating energy or the dose of the Si+ ions increases. This result suggests that the observed suppression of the nucleation could not be accounted for simply by the amor-phization of the preexisting crystallites by the ion bombardment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shi, F. G., Tong, H. Y., and Ayers, J. D., Appl. Phys. Lett. 67, 350 (1995).Google Scholar
[2] Shi, F. G., Ser. Metal. Mater. 31, 1227 (1994).Google Scholar
[3] Shi, F. G., J. Appl. Phys. 76, 5149 (1994).Google Scholar
[4] Kumomi, H. and Shi, F. G., Phys. Rev. B 52, 16753 (1995).Google Scholar
[5] Shi, F. G. and Seinfeld, J. H., AIChE J. 40, 11 (1994).Google Scholar
[6] Shi, F. G. and Seinfeld, J. H., Mater. Chem. Phys. 37, 1 (1994).Google Scholar
[7] Shi, F. G. and Tu, K. N., Phys. Rev. Lett. 74, 4476 (1995).Google Scholar
[8] Tong, H. Y., King, T. J., and Shi, F. G., Thin Solid films 291, 464 (1996)Google Scholar
[9] Chiang, A., Huang, T. Y., Wu, I.-W., and Zarzycki, M. H., and Fuse, M., in Polysilicon Films and Interfaces, edited by Wong, C. W., Thompson, C. V., and Tu, K. N. (Mater. Res. Soc. Symp. Proc. 106, Pittsburgh, PA 1988), p. 305310.Google Scholar
[10] Wu, I.-W., Chiang, A., Fuse, M., Öveçoglu, L., and Huang, T. Y., J. Appl. Phys. 65, 4036 (1989).Google Scholar
[11] Wu, I.-W., Chiang, A., Fuse, M., Öveçoglu, L., and Huang, T. Y., in Polysilicon Films and Interfaces, edited by Kamins, T., Raicu, B., and Thompson, C. V. (Mater. Res. Soc. Symp. Proc. 182, Pittsburgh, PA 1990), p. 107113.Google Scholar
[12] Kumomi, H. and Yonehara, T., in Evolution of Thin-Film and Surface Microstructure, edited by Thompson, C. V., Tsao, J. Y., and Srolovitz, D. J. (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA 1991), p. 645650.Google Scholar
[13] Kumomi, H., Yonehara, T., and Noma, T., Appl. Phys. Lett. 59, 3565 (1991).Google Scholar
[14] Kumomi, H. and Yonehara, T., J. Appl. Phys. 75, 2884 (1994).Google Scholar
[15] Mandelbrot, B. B., in Fractals: Form, Chance and Dimension (Freeman, San Francisco, 1977).Google Scholar
[16] Becker, F. S., Oppolzer, H., Weitzel, I., Eichermüller, H., and Schaber, H., J. Appl. Phys. 56, 1233 (1984).Google Scholar
[17] Spinella, C., Lombardo, S., and Campisano, S. U., Phys. Rev. Lett. 66, 1102 (1991).Google Scholar
[18] Morgiel, J., Wu, I.-W., Chiang, A., and Sinclair, R., in Polysilicon Films and Interfaces, edited by Kamins, T., Raicu, B., and Thompson, C. V. (Mater. Res. Soc. Symp. Proc. 182, Pittsburgh, PA 1990), p. 191194.Google Scholar
[19] Hong, C. H., Park, C. Y., Squelard, S., and Bourgoin, J. C., J. Appl. Phys. 50, 6995 (1992).Google Scholar
[20] Voutsas, A. T. and Hatalis, M. K., J. Electrochem. Soc. 139, 2659 (1992).Google Scholar
[21] Voutsas, A. T. and Hatalis, M. K., J. Electron. Mater. 23, 319 (1994).Google Scholar