Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T02:29:22.979Z Has data issue: false hasContentIssue false

Free Volume Changes and Crack Tip Deformation in Bulk Metallic Glass Alloys and their Composites

Published online by Cambridge University Press:  01 February 2011

Biraja P. Kanungo
Affiliation:
Department of Materials Science and Engineering, The Ohio State University Columbus, OH 43210–1178
Matthew J. Lambert
Affiliation:
Department of Materials Science and Engineering, The Ohio State University Columbus, OH 43210–1178
Katharine M. Flores
Affiliation:
Department of Materials Science and Engineering, The Ohio State University Columbus, OH 43210–1178
Get access

Abstract

The free volume changes associated with deformation of metallic glasses play an important role in strain localization in shear bands. However the details of these structural changes during inhomogeneous deformation are unclear. In this study, the free volume changes in Cu60Zr30Ti10 and Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glasses were examined and quantified using differential scanning calorimetry following rolling and low temperature annealing. It was found that the height of the endothermic peak associated with the glass transition decreased following deformation whereas annealing resulted in an increase in the peak height. Additionally, the exothermic event associated with structural relaxation prior to the glass transition occurred at a lower temperature after rolling in the Zr-based system. Surprisingly, a similar shift in the onset temperature was not observed in the Cu-based system, suggesting a different structural relaxation mechanism. The Zr-based system was successfully modeled and the results indicated that the free volume increased ∼4% with inhomogeneous deformation and decreased ∼14% with annealing, consistent with expectations. In an effort to further characterize strain localization in shear bands, the development of a crack tip damage zone in a Zr-based bulk metallic glass composite was studied using scanning electron and atomic force microscopy. The first shear band developed at an angle of ∼60° from the crack propagation direction. This is discussed in light of the Mohr-Coulomb yield criterion for metallic glasses. The reinforcement phase arrested the growth of individual shear bands, while accumulated damage resulted in the shear bands cutting through the crystalline phase, ultimately resulting in crack branching and failure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Flores, K.M. and Dauskardt, R.H., Scripta Mater., 41, 937 (1999).Google Scholar
2. Flores, K.M. and Dauskardt, R.H., J. Mater. Res., 14, 638 (1999).Google Scholar
3. Flores, K.M. and Dauskardt, R.H., Acta Mater., 49, 2527 (2001).Google Scholar
4. Suh, D. and Dauskardt, R.H., J. Mater. Res., 17, 1254 (2002).Google Scholar
5. Gilbert, C.J., Ritchie, R.O., and Johnson, W.L., App. Phys. Let., 71, 476 (1997).Google Scholar
6. Gilbert, C.J., Lippmann, J.M., and Ritchie, R.O., Scripta Mater., 38, 537 (1998).Google Scholar
7. Gilbert, C.J., Schroeder, V., and Ritchie, R.O., Met. Trans. A, 30A, 1739 (1999).Google Scholar
8. Hufnagel, T.C., El-Deiry, P., and Vinci, R.P., Scripta Mater., 43, 1071 (2000).Google Scholar
9. Wright, W.J., Hufnagel, T.C., and Nix, W.D., J. App. Phys., 93, 1432 (2003).Google Scholar
10. Wright, W.J., Saha, R., and Nix, W.D., Materials Transactions - JIM, 42, 642 (2001).Google Scholar
11. Zhang, Z.F., Eckert, J., and Schultz, L., Acta Mater., 51, 1167 (2003).Google Scholar
12. Schuh, C.A. and Nieh, T.G., Acta Mater., 51, 87 (2003).Google Scholar
13. Conner, R.D., Johnson, W.L., Paton, N.E., and Nix, W.D., J. App. Phys., 94, 904 (2003).Google Scholar
14. Argon, A.S., Acta Metall., 27, 47 (1979).Google Scholar
15. Spaepen, F., Acta Metall., 25, 407 (1977).Google Scholar
16. Steif, P.S., Spaepen, F., and Hutchinson, J.W., Acta Metall., 30, 447 (1982).Google Scholar
17. Flores, K.M. and Dauskardt, R.H., Mater. Sci. Eng. A, A319–321, 511 (2001).Google Scholar
18. Conner, R.D., Dandliker, R.B., and Johnson, W.L., Acta Mater., 46, 6089 (1998).Google Scholar
19. Choi-Yim, H., Busch, R., Koster, U., and Johnson, W.L., Acta Mater., 47, 2455 (1999).Google Scholar
20. Hays, C.C., Kim, C.P., and Johnson, W.L., Phys. Rev. Let., 84, 2901 (2000).Google Scholar
21. Kato, H., Hirano, T., Matsuo, A., Kawamura, Y., and Inoue, A., Scripta Mater., 43, 503 (2000).Google Scholar
22. Fan, C., Ott, R.T., and Hufnagel, T.C., App. Phys. Let., 81, 1020 (2002).Google Scholar
23. Bian, Z., P.M.X., , Zhang, Y., and Wang, W.H., App. Phys. Let., 81, 4739 (2002).Google Scholar
24. Ma, H., Xu, J., and Ma, E., App. Phys. Let., 83, 2793 (2003).Google Scholar
25. van den Beukel, A. and Sietsma, J., Acta Metall. Mater., 38, 383 (1990).Google Scholar
26. Tuinstra, P., Duine, P.A., Sietsma, J., and Beukel, A.v.d., Acta Metall. Mater., 43, 2815 (1995).Google Scholar
27. Daniel, B.S.S., Reger-Leonhard, A., Heilmaier, M., Eckert, J., and Schultz, L., Mechanics of Time-Dependent Materials, 6, 193 (2002).Google Scholar
28. Hammond, V.H., Houtz, M.D., and O'Reilly, J.M., J. Non-Cryst. Sol., 325, 179 (2003).Google Scholar
29. Slipenyuk, A. and Eckert, J., Scripta Mater., 50, 39 (2004).Google Scholar
30. De Hey, P., Sietsma, J., and van den Beukel, A., Acta Mater., 46, 5873 (1998).Google Scholar
31. Tsao, S.S. and Spaepen, F., Acta Metall., 33, 881 (1985).Google Scholar
32. Duine, P.A., Sietsma, J., and van den Beukel, A., Acta Metall. Mater., 40, 743 (1992).Google Scholar
33. Szuecs, F., Kim, C.P., and Johnson, W.L., Acta Mater., 49, 1507 (2001).Google Scholar
34. Hays, C.C., Schroers, J., Geyer, U., Bossuyt, S., Stein, N., and Johnson, W.L., Materials Science Forum, 343–346, 103 (2000).Google Scholar
35. Bakke, E., Busch, R., and Johnson, W.L., App. Phys. Let., 67, 3260 (1995).Google Scholar
36. Waniuk, T.A., Busch, R., Masuhr, A., and Johnson, W.L., Acta Mater., 46, 5229 (1998).Google Scholar
37. Wen, P., Tang, M.B., Pan, M.X., Zhao, D.Q., Zhang, Z., and Wang, W.H., Phys. Rev. B, 67, 212201 (2003).Google Scholar
38. Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Acta Mater., 49, 2645 (2001).Google Scholar
39. Flores, K.M., Johnson, W.L., and Dauskardt, R.H., Scripta Mater., 49, 1181 (2003).Google Scholar
40. Alpas, A.T., Edwards, L., and Reid, C.N., Met. Trans. A, 20A, 1395 (1989).Google Scholar
41. Kanungo, B.P., Glade, S.C., Asoka-Kumar, P., and Flores, K.M., Intermet., in review (2003).Google Scholar
42. Bruck, H.A., Christman, T., Rosakis, A.J., and Johnson, W.L., Scripta Metall. Mater., 30, 429 (1994).Google Scholar
43. Schneibel, J.H., Horton, J.A., and Munroe, P.R., Met. Trans. A, 32A, 2819 (2001).Google Scholar