Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:29:17.706Z Has data issue: false hasContentIssue false

Fracture Surfaces in 3D Fuse Networks

Published online by Cambridge University Press:  15 February 2011

V. I. Räisänen
Affiliation:
Centre for Scientific Computing, P. O. Box 405, FIN-02101 Espoo, Finland
M. J. Alava
Affiliation:
Michigan State University, Department of Physics and Astronomy, E. Lansing, MI 48824–1116, U.S.A Laboratory of Physics, Helsinki U. of Technology, Otakaari 1M, SF-02150 Espoo, Finland (December 5, 1995)
R. M. Nieminen
Affiliation:
Centre for Scientific Computing, P. O. Box 405, FIN-02101 Espoo, Finland Laboratory of Physics, Helsinki U. of Technology, Otakaari 1M, SF-02150 Espoo, Finland (December 5, 1995)
Get access

Extract

We study a 3D random fuse network model with computer simulations. The breaking thresholds are distributed randomly, corresponding to quenched disorder. We find for the roughness exponent of the final fracture surface ζ = 0.47 ± 0.19, which is close both the minimum energy surface value and the directed percolation depinning model value in 2+1 dimensions. It is also similar to results from measurements of fracture surfaces at nanometer scale, and from experiments in which the fracture process occurs slowly as in fatique. The traditional measure of damage, the number of broken bonds grows faster than the area effect (nb ˜ L2.28), with no signs of a trivally brittle regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bouchaud, E., Lapasset, G. and Planès, J., Europhys. Lett. 13, 73 (1990) (and references therein).Google Scholar
[2] Bouchaud, E. and Bouchaud, J.-P., Phys. Rev. B 50, 17 752 (1994).Google Scholar
[3] Måløy, K. J., Hansen, A. and Hinrichsen, E. L., Phys. Rev. Lett. 68, 213 (1992).Google Scholar
[4] Milman, V. Yu., Blumenfeld, R., Stelniashenko, N. A. and Ball, R. C., Phys. Rev. Lett. 71, 204 (1993).Google Scholar
[5] Bouchaud, E. and Navéos, S., J. Phys. I (France) 5, 547 (1995).Google Scholar
[6] Miller, S. and Reifenberger, R., J. Vac. Sci. Tech. B 10, 1203 (1992).Google Scholar
[7] Schinittbuhl, J., Roux, S. and Berthaud, Y., Europhys. Lett. 28, 585 (1994).Google Scholar
[8] Mandelbrot, B. B., Passoja, D. E. and Paullay, A. J., Nature (London) 308, 721 (1984).Google Scholar
[9] Mu, Z. Q. and Lung, C. W., J. Phys. D 21, 848 (1988).Google Scholar
[10] Long, Q. Y., Suqin, L. and Lung, C. W., J. Phys. D 24, 602 (1991).Google Scholar
[11] Mosolov, A. B., Europhys. Lett. 24, 673, 1993.Google Scholar
[12] Hansen, A., Hinrichsen, E. L. and Roux, S., Phys. Rev. Lett. 66, 2476 (1991).Google Scholar
[13] Kardar, M. and Zhang, Y.-C., Phys. Rev. Lett. 58, 2087 (1987); D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708 (1985).Google Scholar
[14] Kardar, M., Parisi, G. and Zhang, Y.-C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
[15] Roux, S., Hansen, A. and Guyon, E., J. Phys. (Paris) 48, 2125 (1987).Google Scholar
[16] Kardar, M. and Zhang, Y.-C., Europhys. Lett. 8, 233 (1989).Google Scholar
[17] cf. e.g. Ch. 26 in Barabási, A.-L., Stanley, H. E., Fractal Concepts in Surface Growth, Cambridge University Press, 1995, Cambridge, UK.Google Scholar
[18] Amnaral, L. A. N. et al., Phys. Rev. E 51, 4655 (1995).Google Scholar
[19] Bouchaud, J. P. et al., Phys. Rev. Lett. 71, 2240 (1993).Google Scholar
[20] Kahng, B. et al., Phys. Rev. B 37, 7625 (1988).Google Scholar
[21] Duxbury, P. M., Leath, P. L. and Beale, P. D., Phys. Rev. B 36, 367 (1987); P. M. Duxbury, P. L. Leath and P. D. Beale, Phys. Rev. Lett. 57, 1053 (1986).Google Scholar
[22] Duxbury, P. M., Beale, P. D. and Moukarzel, C., Phys. Rev. B 51, 3476 (1995); C. Moukarzel and P. M. Duxbury, J. Appl. Phys. 76, 4086 (1994).Google Scholar
[23] Arbabi, S. and Sahimi, M., Phys. Rev. B 41, 772 (1990).Google Scholar
[24] Sahimi, M. and Arbabi, S., Phys. Rev. B 47, 713 (1993).Google Scholar
[25] Geist, A. et al., PVM 3 User's Guide and Reference Manual, ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A, 1994.Google Scholar
[26] Räisänen, V. I. and Alava, M. J., submitted for publication.Google Scholar
[27] Arcangelis, L. de and Herrmann, H. J., Phys. Rev. B 39, 2678 (1989).Google Scholar